CMC MSU Course Syllabus (Tentative)

Course No.	Game, Knowledge and Cooperation I	BSc MSc		
INSTRUCTOR	Takashi Matsuhisa (DSc)	CONTACT	Office E-mail: mathisa@ge.ibaraki-ct.ac.jp	
DESCRIPTION and POURPOSES	This course is an introduction to game theory and strategic thinking from epistemic point view. Ideas such as information, knowledge, possibility, common-knowledge, Nash equilibrium, communication are discussed and applied to game played in class and to cooperative management problem such as principal-agent mode with moral hazard.			
OBJECTIVES	After successfully completing the course, you will have their applications: 1. Information partition model 2. Formal model of knowledge and common-knowledg 3. Nash equilibrium and Bayesian game 4. Epistemic approach to Game Theory	0	tanding of the following topics and	

TENTATIVE SCHEDULE

DAY	THEME	TOPICS		
Lecture 1	Introduction to the courses	Preliminaries: Binary relation, Partition		
Lecture 2	Information Partition	Dirty faces ladies, Information function, Possibility set		
Lecture 3	Knowledge and Possibility	Knowledge operator, Possibility operator, Information partition, Trinity theorem		
Lecture 4	Common-Knowledge	Mutual knowledge, Infinite regress, Communal operator		
Lecture 5	Agreeing to Disagree	Aumann's theorem: We cannot agree to disagree		
Lecture 6	Communication and Knowledge Revision	Communication network, Revised information, Revision process of conjectures		
Lecture 7	Agreeing to Disagree Revisited	We reach consensus by communication after long run		
Lecture 8	Game and Nash Equilibrium	Strategic game, Mixed strategy, Nash equilibrium		
Lecture 9	Epistemic Condition for Nash Equilibrium (1)	Common-knowledge on conjectures leads to Nash equilibrium		
Lecture 10	Epistemic Condition for Nash Equilibrium (2)	Communication on conjectures leads to Nash equilibrium		
Lecture 11	Cooperative Management (1)	Principal-agent model, Moral hazard,		
Lecture 12	Cooperative Management (2)	Extended Principal-agent model under uncertainty		
Lecture 13	Cooperative Management (3)	Possible resolution of Moral Hazard by common-knowledge		
Lecture 14	Concluding Remarks			
Lecture 15	Final Examination			
Reference s	 R. J. Aumann, 1976. 'Agreeing to disagree', Annals of Statistics Vol. 4, pp.1236—1239 R. Aumann and A. Brandenburger. 1995. 'Epistemic Conditions for Nash Equilibrium', Econometrica Vol 63 No. 5, pp. 1161-1180 K. Binmore. <i>Fun and Game</i>. D.C.Heath and Company, Lexington, Massachusetts (1992) M.J. Osborn and A. Rubinstein. <i>A Course on Game Theory</i>. MIT Press (1994) 			
Grading Plan	ТВА			