Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

декан факультета вычислительной математики и кибернетики

27» сентября 2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Дифференциальные уравнения

Уровень высшего образования: бакалавриат

Направление подготовки / специальность: 02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обучения по дисциплине (модулю)				
Содержание и код компетенции. Индикатор (показатель) достижения компетенции		Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций		
ОПК-1. Способен применять	ОПК-1.1 – Обладает	Знать:		
фундаментальные знания,	фундаментальными знаниями,	методологию вывода и		
полученные в области	полученными в области	анализа основных моделей,		
математических и (или)	математических и (или)	приводящих к обыкновенным		
естественных наук, и	естественных наук	дифференциальным		
использовать их в	ОПК-1.2 – Умеет использовать	уравнениям (ОДУ);		
профессиональной	их в профессиональной	основные классы		
деятельности	деятельности	интегрируемых ОДУ и		
	ОПК-1.3 – Имеет навыки	методы их решения;		
	выбора методов решения задач	общую теорию и методы		
	профессиональной	решения линейных ОДУ и		
	деятельности на основе	линейных систем ОДУ;		
	теоретических знаний	основы теории		
		существования,		
		единственности и		
		зависимости от параметров		
		решений задачи Коши, а		
		также связанные с ними		
		методы приближённого		
		решения ОДУ;		
		основы теории устойчивости		
		по Ляпунову и методы		
		исследования устойчивости;		
		классификацию положений		
		равновесия автономных систем на плоскости;		
		основы теории и стандартные		
		методы решения краевых		
		задач и задач Штурма-		
		Лиувилля для линейных ОДУ		
		второго порядка;		
		основы теории и		
		классические методы		
		интегрирования уравнений в		
		частных производных		
		первого порядка;		
		основы теории вариационного		
		исчисления, их связь с		
		краевыми задачами и задачей		
		Штурма-Лиувилля.		
		Уметь:		
		применять на практике		
		общую теорию и методы		

решения линейных ОДУ и систем ОДУ, в том числе, метод вариации постоянных, а также находить частное решение в виде квазимногочлена; находить приближённые решения ОДУ в виде степенных рядов, применять теорию зависимости решений ОДУ от параметров для приближённого решения ОДУ: применять первый метод Ляпунова для исследования устойчивости решений систем ОДУ; классифицировать положения равновесия автономных систем ОДУ на плоскости, исследовать поведение фазовых траекторий в окрестности положений равновесия и изображать эскизы типичных фазовых портретов; решать краевые задачи для линейных ОДУ (в том числе с использованием функции Грина), а также задачи Штурма-Лиувилля для линейных ОДУ; формулировать простейшие прикладные вариационные задачи, применять на практике необходимые условия экстремума для поиска экстремалей в основных задачах вариационного исчисления. Владеть: навыками интегрирования основных классов ОДУ и уравнений в частных производных первого порядка; навыками применения теорем о существовании и единственности решения задачи Коши для качественного исследования ОДУ; навыками использования

определения устойчивости по
Ляпунову, а также построения
функций Ляпунова, для
исследования устойчивости
решений систем ОДУ;

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты об			
Содержание и код компетенции. Индикатор (показатель) достижения компетенции		Планируемые результаты обучения по дисциплине, сопряженные с индикаторами	
ОПК-1. Способен применять	ОПК-1.1 – Обладает	i	
ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1 – Обладает фундаментальными знаниями, полученными в области математических и (или) естественных наук ОПК-1.2 – Умеет использовать их в профессиональной деятельности ОПК-1.3 – Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических знаний	достижения компетенций Знать: методологию вывода и анализа основных моделей, приводящих к обыкновенным дифференциальным уравнениям (ОДУ); основные классы интегрируемых ОДУ и методы их решения; общую теорию и методы решения линейных ОДУ и линейных систем ОДУ; основы теории существования, единственности и зависимости от параметров решений задачи Коши, а также связанные с ними методы приближённого решения ОДУ; основы теории устойчивости по Ляпунову и методы исследования устойчивости; классификацию положений равновесия автономных систем на плоскости; основы теории и стандартные методы решения краевых задач и задач Штурма-Лиувилля для линейных ОДУ второго порядка; основы теории и	
		классические методы интегрирования уравнений в частных производных первого порядка; основы теории	

вариационного исчисления, их связь с краевыми задачами и задачей Штурма-Лиувилля. Уметь: применять на практике общую теорию и методы решения линейных ОДУ и систем ОДУ, в том числе, метод вариации постоянных, а также находить частное решение в виде квазимногочлена; находить приближённые решения ОДУ в виде степенных рядов, применять теорию зависимости решений ОДУ от параметров для приближённого решения ОДУ; применять первый метод Ляпунова для исследования устойчивости решений систем ОДУ; классифицировать положения равновесия автономных систем ОДУ на плоскости, исследовать поведение фазовых траекторий в окрестности положений равновесия и изображать эскизы типичных фазовых портретов; решать краевые задачи для линейных ОДУ (в том числе с использованием функции Грина), а также задачи Штурма-Лиувилля для линейных ОДУ; формулировать простейшие прикладные вариационные задачи, применять на практике необходимые условия экстремума для поиска экстремалей в основных задачах вариационного исчисления. Владеть: навыками интегрирования основных классов ОДУ и уравнений в частных производных первого порядка; навыками применения

теорем о существовании и
единственности решения
задачи Коши для
качественного исследования
ОДУ;
навыками использования
определения устойчивости по
Ляпунову, а также
построения функций
Ляпунова, для исследования
устойчивости решений
систем ОДУ;

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

контрольная работа

5 семестр

Контрольная работа № 1			
Вариант 1	Вариант 2		
1. Решить уравнение и найти особые решения, если они есть: $5y + y'^2 = x(x + y').$ 2. Решить задачу Коши: $\begin{cases} y'' = y'^2 + (1 - y)y', \\ y(1) = 1, y'(1) = 1. \end{cases}$ Решить уравнения: $3. (3x^2y^2 + 1)y' + 3xy^3 = 0.$ $4. y' + y \operatorname{tg} x + 4y^2 \sin x = 0.$ $5. (2x + y)(1 - 2y') = 9y' - 2.$	Вариант 2 1. Решить уравнение и найти особые решения, если они есть: $y'^2-4y'+4y=8x-12$. 2. Решить задачу Коши: $\begin{cases} xyy''+(1+x^2)yy'+xy^2=xy'^2, \\ y(1)=1, \ y'(1)=-1. \end{cases}$ Решить уравнения: $3. \ y^3+2y^2xy'=2y'\ln y.$ $4. \ 2yy'-y^{-1}=x^{-2}y-(xy^{-2}+x^{-1})y'.$ $5. \ yy'-3x=6-(2x+5)y'.$		
Контрольна	я работа № 2		
Вариант 1	Вариант 2		
Найти решения линейных ОДУ и их систем:	Найти решения линейных ОДУ и их систем:		
1. $y''+9y = 12\sin 3x$ 2. $y''+4y'+4y = \frac{e^{-2x}}{x-3}$. 3. $\begin{cases} x' = -3x - z \\ y' = -4x - 2y - 3z \\ z' = 4x + 2y + 3z \end{cases}$	1. $y''+6y'+9y = 4e^{-3x}$ 2. $y''-6y'+10y = \frac{e^{3x}}{\cos x}$. 3. $\begin{cases} x' = x + 2y + 2z \\ y' = -y - 2z \\ z' = y + z \end{cases}$		

4.
$$\begin{cases} x' = x - 2y \\ y' = x - y + \frac{1}{\sin t} \\ 5. (2x - x^2)y'' + 2y' - 2x^{-1}y = 0 \end{cases}$$

4.
$$\begin{cases} x' = 6x - 9y + \cos t \\ y' = 4x - 6y \\ 5. x^{2}y'' + 2xy' - 2y = 4x^{2} \end{cases}$$

6 семестр

Контрольная работа № 3			
Вариант 1	Вариант 2		
1. Найти $y'_{\mu} _{\mu=0}$: $\begin{cases} y'=e^{x-y}+\mu y, \\ y(0)=\mu. \end{cases}$	1. Найти $y'_{\mu} _{\mu=0}$: $\begin{cases} y' = \mu \ x^{-2} y^{-1} - y x^{-1}, \\ y(1) = 1 + 2\mu. \end{cases}$		
2. Решить систему нелинейных ОДУ	2. Решить систему нелинейных ОДУ		
$\frac{\mathrm{d}x}{y^2+z^2} = \frac{\mathrm{d}y}{z} = \frac{\mathrm{d}z}{y}.$ 3. Исследовать на устойчивость: $\begin{cases} t^3x' - t^2x = t^2 - 3\\ x(1) = 0 \end{cases}$ 4. Найти a и b , при которых асимптотически устойчиво нулевое решение уравнения $2y^{(IV)} + ay''' + y'' + 2y' + 2by = 0$	$\frac{dx}{2yz} = \frac{dy}{y} = \frac{dz}{z}.$ 3. Исследовать на устойчивость: $\begin{cases} x' + x \tan t = e^t \cos t \\ x(0) = 1 \end{cases}$ 4. Найти <i>a</i> и <i>b</i> , при которых асимптотически устойчиво нулевое решение уравнения $y^{(IV)} + ay''' + by'' + y' + 2y = 0$		
5. Исследовать на устойчивость все положения равновесия системы	5. Исследовать на устойчивость все положения равновесия системы		
$\begin{cases} x' = x + y + 1 \\ y' = y + \sqrt{1 + 2x^2} \end{cases}$	$\begin{cases} x' = \ln(2 - y^2) \\ y' = e^x - e^y \end{cases}$		

$\begin{cases} x - x + y + 1 \\ y' = y + \sqrt{1 + 2x^2} \end{cases}$	$\begin{cases} y' = e^x - e^y \end{cases}$		
Контрольная	тработа № 4		
Вариант 1	Вариант 2		
1. Изобразить эскиз траекторий решений системы в окрестности положения равновесия системы ОДУ $\begin{cases} x' = x + 2y \\ y' = 2x - 2y \end{cases}$ $\begin{cases} x^2y - 2y = -2x^3, \end{cases}$	1. Изобразить эскиз траекторий решений системы в окрестности положения равновесия системы ОДУ		
2. Решить краевую задачу $\begin{cases} x^2y "-2y = -2x^3, \\ \lim_{x \to 0} y(x) = 0, \\ y'(1) = 1/2. \end{cases}$	2. Решить краевую задачу $\begin{cases} x^2y "-2y = 4x^{-2}, \\ y(1) = 5, \\ \lim_{x \to +\infty} y(x) = 0. \end{cases}$		
3. Построить функцию Грина: $\begin{cases} y'' + y = f(x), \\ y(\frac{\pi}{2}) = y'(\frac{5\pi}{2}) = 0. \end{cases}$ 4. Решить задачу Коши для ДУ в частных производных 1-го порядка $x(y-z)\frac{\partial z}{\partial x} + z\frac{\partial z}{\partial y} = y, \ 2y^2 = z^2, x = y^2e^{z-y}.$	3. Построить функцию Грина: $\begin{cases} y''-y=f(x),\\ y'(-\infty)=y'(0)=0. \end{cases}$ 4. Решить задачу Коши для ДУ в частных производных 1-го порядка $(y-z)\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz, y=z^2, x^2+2z=0.$ 5. Найти стационарные кривые функционала		

7

5.	Найти стационарные кривые функционала
	$\int_{1}^{1} (v^{2} + v'^{2}) dx$, $v(0) = 0$, $v(1) = 1$

$$\int_{-1}^{1} (2xy - y'^2) dx, \ y(-1) = -1, y(1) = 1$$

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме зачета (5 семестр) экзамена (6 семестр) В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

5 семестр

Вопросы к зачету.

- 1. Понятие дифференциального уравнения, примеры. Редукция ОДУ п-го прядка, разрешенного относительно старшей производной, к нормальной системе ОДУ. Определение решения общего ОДУ п-го прядка и его интегральной кривой. Определение решения, интегральной кривой и фазовой траектории нормальной системы ОДУ, примеры.
- 2. Примеры математических моделей, использующих дифференциальные уравнения: движение материальной точки в пространстве под действием силы, зависящей от времени, положения точки и ее скорости; динамика популяций в рамках модели «хищник-жертва».
- 3. ОДУ 1 порядка в симметричном виде, определение параметрического решения. Интеграл и общий интеграл, примеры. Уравнения в полных дифференциалах (УПД). Теорема об общем интеграле УПД.
- 4. Уравнения в полных дифференциалах (УПД). Теорема о необходимом и достаточном условии того, что ОДУ в симметричном виде является УПД.
- 5. Уравнения в полных дифференциалах. Интегрирующий множитель. Теорема о существовании интегрирующего множителя.
- 6. Лемма Гронуолла-Беллмана.
- 7. Постановка задачи Коши для ОДУ 1 порядка, разрешенного относительно производной. Лемма о редукции этой задачи к интегральному уравнению. Условие Липшица по переменной y для скалярной функции f(t,y). Теорема о единственности решения задачи Коши для ОДУ 1 порядка, разрешенного относительно производной.
- 8. Теорема о существовании решения задачи Коши для ОДУ 1 порядка, разрешенного относительно производной.
- 9. Постановка задачи Коши для ОДУ 1 порядка, не разрешенного относительно производной, примеры. Теорема о существовании и единственности решения задачи Коши для ОДУ 1 порядка, не разрешенного относительно производной. Особое решение ОДУ 1-го порядка, примеры.
- 10. Постановка задачи Коши для нормальной системы ОДУ. Условие Липшица по переменным $(y_1, ..., y_n)$ для функции $f(t, y_1, ..., y_n)$. Теорема о единственности решения задачи Коши для нормальной системы ОДУ.
- 11. Теорема о существовании решения задачи Коши для нормальной системы ОДУ на произвольном отрезке.
- 12. Постановка задачи Коши для ОДУ n-го порядка, разрешенного относительно старшей производной. Теорема о существовании и единственности решения этой задачи на произвольной отрезке.
- 13. Постановка задач Коши для линейного ОДУ n-го порядка и линейной системы ОДУ. Теоремы о существовании и единственности решения этих задач на произвольной отрезке.
- 14. Линейная зависимость и независимость скалярных функций. Определитель Вронского и его свойства. Примеры. Теорема об альтернативе для определителя Вронского для решений однородного линейного ОДУ п-ого порядка.
- 15. Фундаментальная система решений линейного ОДУ п-ого порядка. Теорема о существовании ФСР. Теорема об общем решении однородного линейного ОДУ п-ого порядка.

- 16. Теорема об общем решении неоднородного линейного ОДУ п-ого порядка. Метод вариации постоянных.
- 17. Теорема о построении ФСР однородного линейного ОДУ n-ого порядка с постоянными коэффициентами. Пример построения однородного линейного ОДУ с постоянными коэффициентами по заданным решениям.
- 18. Теорема о единственности однородного линейного ОДУ п-ого порядка, имеющего заданную ФСР.
- 19. Теорема о построении однородного линейного ОДУ п-ого порядка, имеющего заданный набор решений, пример. Формула Остроградского-Лиувилля.
- 20. Линейная зависимость и независимость векторных функций. Определитель Вронского и его свойства. Примеры. Теорема об альтернативе для определителя Вронского для решений однородной линейной системы ОДУ.
- 21. Фундаментальная система решений однородной линейной системы ОДУ. Фундаментальная матрица. Теорема о существовании ФСР. Теорема об общем решении однородной линейной системы ОДУ.
- 22. Теорема об общем решении неоднородной линейной системы ОДУ. Матрицант. Теорема о частном решении неоднородной линейной системы ОДУ (метод вариации постоянных).
- 23. Теорема о построении ФСР однородной линейной системы ОДУ n-ого порядка с постоянными коэффициентами в случае существования n линейно независимых собственных векторов матрицы системы.
- 24. Теорема о построении ФСР однородной линейной системы ОДУ n-ого порядка с постоянными коэффициентами в случае отсутствия n линейно независимых собственных векторов матрицы системы.

Билет для зачета содержит 4 вопроса, например:

- 1. Сформулировать и доказать теорему о необходимом и достаточном условии того, что обыкновенное дифференциальное уравнение 1-го порядка в симметричном виде является уравнением в полных дифференциалах.
- 2. Сформулировать теорему об альтернативе для определителя Вронского для решений линейной однородной системы обыкновенных дифференциальных уравнений.
- 3. Сформулировать постановку задачи Коши для обыкновенного дифференциального уравнения п-го порядка, разрешенного относительно старшей производной.
- 4. Функции $y_1(t) = t$, $y_2(t) = t^3$, $y_3(t) = |t|^3$ являются решениями линейного однородного обыкновенного дифференциального уравнения второго порядка $t^2y'' 3ty' + 3y = 0$. Исследовать их на линейную зависимость на отрезке [-1,3] и объяснить результат.

Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Зачетная работа			
Вариант 1	Вариант 2		
Решить уравнения	Решить уравнения		
1. $y'^2 - 8xy' + 8x^2 + 4y = 0$	1. $x^4y'^2 + xy' + y = 0$		
2. $xy' = y(1 - \ln x + \ln y)$	2. $1+3y^2y'=x^3y^{-1}y'+3x^2 \ln y$		
3. $2x + 2yy' = x^{-2} \sin^2 y - x^{-1}y' \sin 2y$	3. $(2x + y)y' = 3y' - y - 1$		
$4. y' + 2xy^3 = y$	$4. \ 2xy' = 3y - 4xy^3$		
5. $y''+3y'-4y=5e^{-4x}$.	5. $y''-y=2e^x$.		
6. $y''-2y'+y = \frac{e^x}{x}$.	6. $y''+3y'+2y = \frac{1}{e^x+1}$.		

Решить системы уравнений	Решить системы уравнений
(x' = 2x + 2y - 2z	(x' = x + 2y + 2z
7. $\begin{cases} y' = 2x + 5y - 4z \end{cases}$	$7. \left\{ y' = 2x + y + 2z \right\}$
$\left(z' = -2x - 4y + 5z\right)$	(z' = 2x + 2y + z
$8. \begin{cases} x' = -3x - 3y + 1 \\ x' = -3x - 3y + 1 \end{cases}$	$\int_{0}^{\infty} x' = -4x - 4y$
y' = 6x + 6y	y' = 6x + 6y - 1

6 семестр

Вопросы к экзамену.

- 1. Понятие дифференциального уравнения, примеры. Редукция ОДУ n-го прядка, разрешенного относительно старшей производной, к нормальной системе ОДУ. Определение решения общего ОДУ n-го прядка и его интегральной кривой. Определение решения, интегральной кривой и фазовой траектории нормальной системы ОДУ, примеры.
- 2. Примеры математических моделей, использующих дифференциальные уравнения: движение материальной точки в пространстве под действием силы, зависящей от времени, положения точки и ее скорости; динамика популяций в рамках модели «хищник-жертва».
- 3. ОДУ 1 порядка в симметричном виде, определение параметрического решения. Интеграл и общий интеграл, примеры. Уравнения в полных дифференциалах (УПД). Теорема об общем интеграле УПД.
- 4. Уравнения в полных дифференциалах (УПД). Теорема о необходимом и достаточном условии того, что ОДУ в симметричном виде является УПД.
- 5. Уравнения в полных дифференциалах. Интегрирующий множитель. Теорема о существовании интегрирующего множителя.
- 6. Лемма Гронуолла-Беллмана. Условие Липшица для скалярной функции от 1-й переменной. Примеры, иллюстрирующие соотношения между множествами липшицевых, непрерывных и дифференцируемых функций; поведение липшицевых функций на бесконечности.
- 7. Постановка задачи Коши для ОДУ 1 порядка, разрешенного относительно производной. Лемма о редукции этой задачи к интегральному уравнению. Условие Липшица по переменной y для скалярной функции f(t,y). Теорема о единственности решения задачи Коши для ОДУ 1 порядка, разрешенного относительно производной.
- 8. Теорема о существовании решения задачи Коши для ОДУ 1 порядка, разрешенного относительно производной.
- 9. Постановка задачи Коши для ОДУ 1 порядка, не разрешенного относительно производной, примеры. Теорема о существовании и единственности решения задачи Коши для ОДУ 1 порядка, не разрешенного относительно производной. Особое решение ОДУ 1-го порядка, примеры.
- 10. Постановка задачи Коши для нормальной системы ОДУ. Условие Липшица по переменным $(y_1, ..., y_n)$ для функции $f(t, y_1, ..., y_n)$. Теорема о единственности решения задачи Коши для нормальной системы ОДУ.
- 11. Теорема о существовании решения задачи Коши для нормальной системы ОДУ на произвольном отрезке.
- 12. Постановка задачи Коши для ОДУ n-го порядка, разрешенного относительно старшей производной. Теорема о существовании и единственности решения этой задачи на произвольной отрезке.
- 13. Постановка задач Коши для линейного ОДУ n-го порядка и линейной системы ОДУ. Теоремы о существовании и единственности решения этих задач на произвольной отрезке.

- 14. Линейная зависимость и независимость скалярных функций. Определитель Вронского и его свойства. Примеры. Теорема об альтернативе для определителя Вронского для решений однородного линейного ОДУ п-ого порядка.
- 15. Фундаментальная система решений линейного ОДУ п-ого порядка. Теорема о существовании ФСР. Теорема об общем решении однородного линейного ОДУ п-ого порядка.
- 16. Теорема об общем решении неоднородного линейного ОДУ п-ого порядка. Метод вариации постоянных.
- 17. Теорема о построении ФСР однородного линейного ОДУ п-ого порядка с постоянными коэффициентами. Пример построения однородного линейного ОДУ с постоянными коэффициентами по заданным решениям.
- 18. Теорема о единственности однородного линейного ОДУ п-ого порядка, имеющего заданную ФСР.
- 19. Теорема о построении однородного линейного ОДУ п-ого порядка, имеющего заданный набор решений, пример. Формула Остроградского-Лиувилля.
- 20. Линейная зависимость и независимость векторных функций. Определитель Вронского и его свойства. Примеры. Теорема об альтернативе для определителя Вронского для решений однородной линейной системы ОДУ.
- 21. Фундаментальная система решений однородной линейной системы ОДУ. Фундаментальная матрица. Теорема о существовании ФСР. Теорема об общем решении однородной линейной системы ОДУ.
- 22. Теорема об общем решении неоднородной линейной системы ОДУ. Матрицант. Теорема о частном решении неоднородной линейной системы ОДУ (метод вариации постоянных).
- 23. Теорема о построении ФСР однородной линейной системы ОДУ n-ого порядка с постоянными коэффициентами в случае существования n линейно независимых собственных векторов матрицы системы. Обоснование возможности перехода к действительнозначной ФСР в случае вещественной матрицы системы.
- 24. Теорема о построении ФСР однородной линейной системы ОДУ n-ого порядка с постоянными коэффициентами в случае отсутствия n линейно независимых собственных векторов матрицы системы.
- 25. Теорема о зависимости от правой части и начального условия решения задачи Коши для ОДУ 1-го порядка, разрешенного относительно производной. Теорема о непрерывной зависимости от параметра решения задачи Коши для ОДУ 1-го порядка, разрешенного относительно производной.
- 26. Теорема сравнения решений задач Коши для ОДУ 1-го порядка, разрешенного относительно производной (неравенство Чаплыгина).
- 27. Теорема о дифференцируемости по параметру решения задачи Коши для ОДУ 1-го порядка, разрешенного относительно производной. Метод малого параметра.
- 28. Основные понятия теории устойчивости, примеры. Редукция общей задачи к задаче для нулевого решения.
- 29. Лемма об устойчивости нулевого решения однородной линейной системы.
- 30. Теорема об устойчивости нулевого решения однородной линейной системы ОДУ с постоянными коэффициентами. Теорема об устойчивости по первому приближению (первый метод Ляпунова, только формулировка).
- 31. Положительно определенные функции и их свойства, примеры. Функция Ляпунова для нормальной системы ОДУ.
- 32. Теоремы об устойчивости и асимптотической устойчивости нулевого решения нормальной системы ОДУ (второй метод Ляпунова). Пример.
- 33. Теорема Четаева о неустойчивости нулевого решения нормальной системы ОДУ. Пример.

- 34. Точки покоя (положения равновесия) нормальной автономной системы ОДУ. Классификация точек покоя (с эскизами фазовых траекторий и обоснованием эскиза узла) линейной однородной системы ОДУ 2-го порядка с постоянными коэффициентами и невырожденной матрицей. Грубые точки покоя, поведение фазовых траекторий нормальной автономной системы ОДУ 2-го порядка в окрестности грубой точки покоя.
- 35. Постановка краевой задачи для линейного ОДУ 2-го порядка, редукция к дивергентному виду и однородным краевым условиям. Тождество Лагранжа, формула Грина, следствия из них.
- 36. Определение функции Грина краевой задачи для линейного ОДУ 2-го порядка, теорема о существовании и единственности функции Грина.
- 37. Теорема о представлении решения краевой задачи для линейного ОДУ 2-го порядка через функцию Грина.
- 38. Задача Штурма-Лиувилля, теоремы о свойствах собственных значений и собственных функций. Теорема Стеклова (только формулировка).
- 39. Первые интегралы (ПИ) нормальной системы ОДУ, лемма о производной в силу системы. Геометрический смысл ПИ, теорема о представлении решения задачи Коши для нормальной системы ОДУ с помощью функционально независимых ПИ.
- 40. Линейное однородное уравнение в частных производных (УЧП) 1-го порядка и соответствующая ему система характеристик. Теорема о связи между решениями линейного однородного УЧП 1-го порядка и первыми интегралами системы характеристик. Теорема об общем решении линейного однородного УЧП 1-го порядка.
- 41. Квазилинейное неоднородное УЧП 1-го порядка и соответствующая ему система характеристик Теорема о связи между решениями квазилинейного неоднородного УЧП 1-го порядка и первыми интегралами системы характеристик.
- 42. Квазилинейное неоднородное УЧП 1-го порядка и соответствующая ему система характеристик. Теорема о геометрическом смысле квазилинейного УЧП 1-го порядка.
- 43. Определение функционала, локального экстремума функционала, допустимой вариации функции, вариации функционала. Теорема о необходимом условии экстремума функционала.
- 44. Основная лемма вариационного исчисления. Теорема о необходимом условии экстремума функционала вида $\int F(x, y, y') dx$, уравнение Эйлера.
- 45. Основная лемма вариационного исчисления. Теорема о необходимом условии экстремума функционала вида $\int F(x, y, y', ... y^{(n)}) dx$.
- 46. Основная лемма вариационного исчисления в двумерном случае. Теорема о необходимом условии экстремума для функционала вида $\iint F(x, y, u(x, y), u_x, u_y) dx dy$.
- 47. Вариационная задача на условный экстремум, теорема о необходимом условии экстремума в этой задаче.
- 48. Вариационное свойство собственных функций и собственных значений задачи Штурма-Лиувилля.

Типовые задачи для экзамена.

1. Найти
$$y'_{\mu}\big|_{\mu=0}$$
 : $\begin{cases} y'=y\ x^{-1}+\mu y^2, \\ y(1)=1+\mu. \end{cases}$ 6. Изобразить эскиз траекторий решений системы в окрестности положения равновесия системы ОДУ $\frac{dx}{z}=\begin{cases} x'=-x-y \\ y'=x-y \end{cases}$

$$\frac{dy}{x^2 + z^2} = \frac{dz}{x}$$

3. Исследовать на устойчивость:

$$\begin{cases} x' = -x - y \\ y' = x - y \end{cases}$$

7. Решить краевую задачу $\begin{cases} x^2y"-6y=8x^2,\\ \lim_{x\to 0}y(x)=0,\\ y(1)=-1. \end{cases}$

8. Построить функцию Грина:

$$\begin{cases} x' = 2e^t - x \\ x(0) = 1 \end{cases}$$

4. Найти a и b, при которых асимптотически устойчиво нулевое

$$y^{(IV)} + by''' + ay'' + 2y' + y = 0$$

5. Исследовать на устойчивость все положения равновесия системы

$$\begin{cases} x' = 1 - 2x - y^2 \\ y' = e^{-4x} - 1 \end{cases}$$

$$\begin{cases} y'' + 9y = f(x), \\ y'(\frac{\pi}{6}) = y(\frac{\pi}{2}) = 0. \end{cases}$$

9. Решить задачу Коши для ДУ в частных производных 1-го порядка

$$x(y+z)\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z, \quad y = z^2, x = ze^{z+y}.$$

10. Найти стационарные кривые функционала

$$\int_0^1 (xy' + y'^2) dx, \ y(0) = 0, y(1) = 1$$

Экзаменационный билет состоит из двух вопросов и задачи, например

- 1. Теорема об общем решении неоднородной линейной системы ОДУ. Матрицант. Теорема о частном решении неоднородной линейной системы ОДУ (метод вариации постоянных).
- 2. Теорема о дифференцируемости по параметру решения задачи Коши для ОДУ 1-го порядка, разрешенного относительно производной. Метод малого параметра.

3. Построить функцию Грина:
$$\begin{cases} y'' + 9y = f(x), \\ y'(\frac{\pi}{6}) = y(\frac{\pi}{2}) = 0. \end{cases}$$

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине				
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)
виды оценочных средств				
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны
(виды оценочных средств:	•	знания	структурированны	
приведены в п. 1.2.)	Silalini	энший		систематические
приводоны в п. 1.2.				знания
Умения	Отсутствие	В целом успешное,	В целом	Успешное и
(виды оценочных средств:	умений	но не	успешное, но	систематическое
приведены в п. 1.2.)		систематическое	содержащее	умение
		умение	отдельные	
			пробелы умение	
			(допускает	
			неточности	
			непринципиальног	
			о характера)	
Навыки	Отсутствие	Наличие	В целом,	Сформированны
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки
деятельности)	(владений,	(наличие	навыки	(владения),
IN	опыта)	фрагментарного	` '	применяемые
приведены в п. 1.2)		опыта)	используемые не в	при решении
			активной форме	задач