Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

декан факультета вычислительной математики и кибернетики

27» сентября 2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Действительный и комплексный анализ

Уровень высшего образования: бакалавриат

Направление подготовки / специальность: 02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обучения по дисциплине (модулю)						
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций				
ОПК-1. Способен применять	ОПК-1.1 – Обладает	Знать:				
фундаментальные знания,	фундаментальными знаниями,	основы теории интегралов,				
полученные в области	полученными в области	зависящих от параметра;				
математических и (или)	математических и (или)	основы теории рядов Фурье и				
естественных наук, и	естественных наук	интеграла Фурье;				
использовать их в	ОПК-1.2 – Умеет использовать	основные свойства функций				
профессиональной	их в профессиональной	Эйлера;				
деятельности	деятельности	основы теории аналитических				
	ОПК-1.3 – Имеет навыки	функций комплексного				
	выбора методов решения задач	переменного;				
	профессиональной	основные принципы				
	деятельности на основе	конформных отображений;				
	теоретических знаний	основы операционного исчисления.				
		исчисления. Уметь:				
		применять при решении задач				
		теоретические факты				
		комплексного анализа;				
		применять теоретические				
		факты об интегралах,				
		зависящих от параметра;				
		использовать функции				
		Эйлера для решения задач;				
		исследовать разложения				
		функций в ряды Фурье и				
		интегралы Фурье;				
		строить и исследовать				
		разложения аналитических				
		функций в ряды Тейлора и				
		Лорана.				
		Владеть: методами качественного				
		анализа интегралов,				
		зависящих от параметра;				
		методами комплексного				
		анализа для вычисления				
		интегралов от аналитических				
		функций, а также интегралов				
		от функций действительного				
		переменного;				
		навыками построения				
		разложений функций в ряды				
		Фурье.				

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

контрольная работа

Контрольная работа № 1

Вариант 1

1. Исследовать на равномерную сходимость на области существования интегралы:

a)
$$\int_{0}^{1} \frac{x^{n}}{\sqrt{1-x^{2}}} dx$$
; 6) $\int_{-\infty}^{\infty} e^{-(x-\alpha)^{2}} dx$.

- 2. Исследовать интеграл $\int_{x}^{+\infty} \alpha e^{-x\alpha^2} dx$ на непрерывность на области существования.
- 3. Вычислить интеграл $\int_{0}^{+\infty} \frac{e^{-at} e^{-bt}}{t^{3/2}} dt$, a, b > 0.
- 4. Определить область существования интеграла $\int_{0}^{+\infty} \frac{x^3}{(2+x^3)^p} dx$ и вычислить этот интеграл.

- 1. Найти F'(a), если $F(a) = \int_{a}^{a} \frac{\ln(1+ax)}{x} dx$.
- 2. Исследовать на равномерную сходимость $\int_{0}^{\infty} \frac{\sin sx}{\sqrt{s^2 (x s)^2}} dx$ в случаях: а) $s \in (1,2)$; б) $s \in (0,+\infty)$.
 - 3. Исследовать на непрерывность $I(a) = \int_{1+(x-a)^2}^{\infty} \frac{\ln x}{1+(x-a)^2} dx$, $a \in (-\infty,+\infty)$.
 - 4. Вычислить $\int\limits_0^\infty \frac{e^{-ax}-e^{-bx}}{x}\sin\lambda\,x\,dx,\quad a,b>0$. Обосновать вычисление.
 - 5. Вычислить $\int_{0}^{\pi/2} \sin^{3/2} x \cos^{1/2} x \, dx$.

Контрольная работа № 2

Вариант 1

- 1. Разложить в ряд Фурье на отрезке $[-\pi,\pi]$ функцию $f(x) = sign(\sin x)$, нарисовать график суммы ряда и исследовать ряд на равномерную сходимость на $[-\pi,\pi]$.
- 2. Разложить в ряд Фурье по косинусам функцию $f(x) = \sin a x, x \in [0, \pi]$, нарисовать график суммы ряда и исследовать ряд на равномерную сходимость на $[-\pi,\pi]$.

Вариант 2 1. Разложить функцию $f(x) = \begin{cases} x, & x \in [0, \pi/2], \\ \pi - x, x \in [\pi/2, \pi], \end{cases}$ по косинусам кратных дуг, нарисовать

графики функции f(x) и суммы ряда Фурье.

2. Разложить в ряд Фурье функцию $f(x) = \begin{cases} 0, & x \in [0,\pi] \cup [2\pi,3\pi], \\ 1, & x \in (\pi,2\pi), \end{cases}$, нарисовать графики

функции f(x) и суммы ряда Фурье.

Контрольная работа № 3

Вариант 1

1. Разложить функцию f(z) в ряд Лорана по степеням z в кольце D, содержащем точку 3/4.

Указать границы кольца D. $f(z) = \frac{1+2z^2}{1+z-z^2}$.

- 2. Найти все особые точки функции f(z) и определить их вид: $f(z) = \frac{1 ch(z/2)}{e^z e^{3z}}$.
- 3. Применяя теорию вычетов, вычислить интегралы

a)
$$\int_{|z-1/2|=1} \frac{z^3 e^{1/z}}{1-z^2} dz; \qquad 6) \int_{-\infty}^{\infty} \frac{(1-x)\cos 2x}{x^2+6x+10} dx.$$

4. Отобразить конформно область $\{|z|>1, \max(\text{Re}\,z, \text{Im}\,z)>0\}$ на верхнюю полуплоскость.

Вариант 2

- 1. Найти множество точек z, в которых функция $f(z) = |z| e^z$ является дифференцируемой.
- 2. Разложить функцию f(z) = ch z в ряд Тейлора с центром в точке z = 2i и указать область, где справедливо разложение.
 - 3. Разложить функцию $f(z) = \frac{z^3}{(z+1)(z-2)}$ в ряд Лорана в кольце $\{0 < |z+1| < 3\}$.
- 4. Определить все особые точки функции $f(z) = \frac{chz}{\sin(z-1)}$ и классифицировать их, включая точку $z = \infty$.
 - 5. Вычислить интеграл $\int_{|z|=3} \sin \frac{z}{z+1} dz$.
 - 6. Вычислить интеграл $\int_{0}^{+\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx$, Re a, Re b > 0.
- 7. Конформно отобразить на верхнюю полуплоскость внутренность угла $\left\{\frac{\pi}{4} < \arg z < \frac{3\pi}{4}\right\}$ с выброшенным лучом $[i, i\infty] = \{it : t \ge 1\}$.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме экзамена

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Экзамен сдается в устной форме. В экзаменационном билете – два вопроса из приведенного ниже списка (по одному из каждого раздела). И одна задача.

Действительный анализ

- 1. Собственные интегралы, зависящие от параметра (ИЗП).
- 2. Признаки равномерной сходимости несобственных ИЗП (Вейерштрасса, Дирихле-Абеля, Дини).
- 3. Непрерывность и интегрируемость несобственных ИЗП на отрезке.
- 4. Дифференцируемость несобственных ИЗП.
- 5. Интегрируемость несобственных ИЗП на полупрямой.
- 6. Вычисление интеграла Дирихле.
- 7. Свойства Г-функции Эйлера.
- 8. Свойства В-функции Эйлера. Связь между эйлеровыми интегралами.
- 9. Асимптотическая формула для функции . Формула Стирлинга.
- 10. Ортонормированные системы. Задача о наилучшем приближении элемента евклидова пространства.
- 11. Замкнутость и полнота ортонормированных систем.
- 12. Теорема Фейера.
- 13. Замкнутость тригонометрической системы. Следствия из замкнутости.
- 14. Теоремы Вейерштрасса о равномерном приближении непрерывной функции.
- 15. Локальная теорема Фейера.
- 16. Простейшие условия равномерной сходимости и почленной дифференцируемости рядов Фурье.
- 17. Уточнённые условия равномерной сходимости ряда Фурье.
- 18. Условие сходимости тригонометрического ряда Фурье в точке. Сходимость ряда Фурье кусочно-гельдеровой функции.
- 19. Принцип локализации Римана.
- 20. Свойства преобразования Фурье.
- 21. Условия разложимости функции в интеграл Фурье.

Комплексный анализ

- 1. Стереографическая проекция.
- 2. Функции комплексного переменного. Предел. Непрерывность.
- 3. Дифференцируемость функций комплексного переменного. Аналитичность.
- 4. Теорема Коши и её обобщение.
- 5. Интегральная формула Коши.
- 6. Принцип максимума модуля аналитической функции.
- 7. Гармонические функции и их свойства. Принцип максимума.
- 8. Разложение гармонических функций в ряды. Ряд Фурье для гармонической функции.
- 9. Бесконечная дифференцируемость аналитических функций. Теорема Лиувилля.
- 10. Неопределённый интеграл. Теорема Морера.
- 11. Равномерно сходящиеся ряды аналитических функций.

- 12. Аналитичность суммы степенного ряда. Теорема Тейлора.
- 13. Теорема единственности аналитических функций. Нули аналитической функции.
- 14. Ряды Лорана. Теорема Лорана.
- 15. Классификация изолированных особых точек. Устранимая особая точка. Полюс.
- 16. Существенно особая точка. Теорема Сохоцкого-Вейерштрасса.
- 17. Вычет аналитической функции в изолированной особой точке. Основная теорема о вычетах.
- 18. Вычисление интегралов с помощью вычетов. Лемма Жордана.
- 19. Логарифмический вычет. Теорема Руше. Принцип аргумента.
- 20. Аналитическое продолжение с вещественной оси. Элементарные функции.
- 21. Аналитическое продолжение с помощью рядов и через границу. Принцип непрерывности.
- 22. Аналитическое продолжение Гамма-функции Эйлера. Формула дополнения.
- 23. Основные принципы конформных отображений: принцип соответствия границ и принцип симметрии Римана-Шварца.
- 24. Свойство аналитической однолистной функции в области.
- 25. Локальное свойство однолистной функции. Отображение области на область при конформном отображении.
- 26. Дробно-линейная функция и её свойства.
- 27. Конформные отображения, осуществляемые элементарными функциями.
- 28. Задача Дирихле для уравнения Лапласа. Случай круга и верхней полуплоскости.
- 29. Следствие из решения задачи Дирихле для круга. Теорема Вейерштрасса о приближении непрерывной функции многочленами.
- 30. Функция Грина (функция источника).
- 31. Преобразование Лапласа и его основные свойства.
- 32. Решение обыкновенных дифференциальных уравнений и уравнений в частных производных с помощью преобразования Лапласа.

Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

- 1. Разложить функцию $f(x) = x^2$ в тригонометрический ряд Фурье в интервале $(0, 2\pi)$. К чему сходится полученное выражение в точке $x = 2\pi$?
- 2. Обосновать возможность дифференцирования под знаком интеграла и вычислить интеграл:

$$\int_{0}^{\infty} \left(\frac{\sin \alpha x}{x} \right)^{2} dx.$$

- 3. Исследовать на равномерную сходимость на множестве: $\int\limits_{1}^{\infty} \alpha \, e^{-\alpha^2 x^2} \, dx, \quad \alpha > 0$.
- 4. Разложить в ряд Лорана на указанном множестве $f(z) = \frac{2z+1}{z^2+z-2}$, 1 < |z| < 2.
- 5. Применить методы ТФКП для вычисления интеграла, обосновать применимость метода:

$$\int_{0}^{\infty} \frac{x \sin \alpha x}{x^2 + k^2} dx, \quad \alpha, k > 0.$$

6. Отобразить конформно сектор $\{|z| < 2, 0 < \arg z < \pi/4\}$ на $\{\operatorname{Im} w > 0\}$.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны	e		
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	В целом,	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
(виды оценочных средств:	опыта)	фрагментарного	(владения), но	применяемые		
приведены в п. 1.2)			используемые не в	при решении		
			активной форме	задач		