Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

утверждаю декан факультета вычислительной математики и кибернетики

> /И.А. Соколов / «27» сентября 2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Теория сложности алгоритмов

Уровень высшего образования:

бакалавриат

Направление подготовки / специальность:

02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обу		
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций
ОПК-6. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-6.1. Знает принципы работы современных информационных технологий ОПК-6.2. Использует современные информационные технологии для решения задач профессиональной деятельности	

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

контрольная работа

Пример контрольной работы

Контрольная работа № 1

Вариант 1	Вариант 2	
 Указать все вещественные значения δ при которых справедлива оценка T_{TD}(n) = O(n^δ), T_{TD}(n) = Ω(n^δ), T_{TD}(n) = Θ(n^δ), тде T_{TD}(n) – сложность алгоритма пробных делений. Верно ли, что для рассмотрения сложности в среднем некоторого алгоритма требуется задание распределения вероятностей а) на множестве всех допустимых входов? на каждом из множеств всех входов фиксированного размера? 	 Известно, что мультипликативная сложность метода Гаусса решения системы п линейных уравнений с п неизвестными допускает оценки 1) O(n³), 2) + O(n²), 3) Θ(n³). а) Из какой оценки (указать номер) следуют две остальные? б) Можно ли из приведенных оценок выбрать такую, которая является следствием любой из остальных? в) Является ли оценка Ω(n³) следствием какойлибо из оценок 1, 2, 3? 	
3. При некоторых значениях п число сравнений, затрачиваемых при бинарном поиске, не определяется однозначно исходя лишь из значения п (например, зная лишь, что n = 6, мы	2. Верно ли, что определение усредненных затрат некоторого рандомизированного алгоритма требует задания распределения вероятностей а) на множестве всех допустимых входов?	

не можем указать точное число сравнений). Но существует бесконечно много n таких, для которых это значение определяется единственным образом и равно $\lfloor \log_2 n \rfloor + 1$. Доказать.

- 4. Пусть QS (n) и opt (n) сложности в среднем быстрой сортировки и оптимальной в среднем сортировки. Верно ли, что QS (n) \sim opt (n)? Если нет, то можно ли подобрать константу с такую, что QS (n) \sim c opt (n)?
- б) на каждом из множеств всех входов фиксированного размера?
- 3. Верно ли, что сложность по числу сравнений сортировки массива из n элементов бинарными вставками есть $n \log_2 n + O(1)$?
- 4. Может ли сортировка со сложностью в худшем случае $\Omega(n \log n)$ по числу перемещений элементов быть оптимальной по порядку сложности по числу сравнений?

Контрольная работа № 2

Вариант 1

- 1.Исследовать битовую сложность вычисления величины $1+2+\dots+n$ последовательными сложениями. Размером входа считать битовую длину m целого числа n.
- 2. Определить сложность алгоритма перекладывания дисков в игре «Ханойские башни» при условии, что затраты на перекладывание со столбика на столбик i-го по величине диска равны i².
- 3. Здесь речь идет о линейной сводимости $P \leq Q$ задач, связанных с мультипликативными операциями над квадратными числовыми матрицами порядка п. Рассматриваются лишь такие алгоритмы решения задачи Q, для сложности по числу арифметических операций каждого из которых выполняется соотношение $T(kn) = O(T(n)), \, k = 2, \, 3.$

Требуется показать, что задача умножения произвольных квадратных матриц линейно сводится к задаче умножения симметричных квадратных матриц.

Вариант 2

- 1. Из определения чисел Фибоначчи видно, что можно вычислить Fn, выполнив n-1 сложение. Доказать, что битовая сложность этого алгоритма допускает оценку $O(n^2)$ при рассмотрении n в качестве размера входа.
- 2. Определить сложность алгоритма перекладывания дисков в игре «Ханойские башни» при условии, что затраты на перекладывание со столбика на столбик i-го по величине диска равны 2ⁱ.
- 3. Здесь речь идет о линейной сводимости $P \leq Q$ задач, связанных с мультипликативными операциями над квадратными числовыми матрицами порядка п. Рассматриваются лишь такие алгоритмы решения задачи Q, для сложности по числу арифметических операций каждого из которых выполняется соотношение T(kn) = O(T(n)), k = 2, 3.

Требуется показать, что задача умножения произвольных квадратных матриц линейно сводится к задаче умножения верхних треугольных матриц.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме экзамена

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Вопросы к экзамену

- 1. Метод «разделяй и властвуй». Теорема о скорости роста функции, заданной рекуррентным неравенством.
- 2. Алгоритм Тоома для умножения чисел.
- 3. Алгоритм Штрассена для умножения матриц.
- 4. Алгоритмы обычного и булевского умножения матриц с битовыми операциями.
- 5. Сложность распознавания принадлежности функции, заданной векторно, классам, определяемым двухместными предикатами.
- 6. Сложность распознавания принадлежности булевой функции, заданной векторно, классу $F_m = U(R_m)$.
- 7. Вычислимые функции, их нумерация. Теоремы о существовании трудно вычислимой общерекурсивной функции.
- 8. Теорема Барздиня о распознавании симметрии.
- 9. Теорема о регулярности языка, распознаваемого со следом константной длины.
- 10. Теорема о регулярности языка, распознаваемого со слаборастущими длиной следа или временем.
- 11. Теорема Кука.
- 12. Теорема об NP-полноте языка ГАМИЛЬТОНОВ ЦИКЛ.
- 13. Задача коммивояжера, ее NP-трудность, теоремы о приближенных алгоритмах для нее.
- 14. Теорема о PSPACE-полноте задачи о квантифицированных булевских формулах.
- 15. Теорема об иерархии по памяти. Несовпадение классов DLOG и PSPACE.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны	e		
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	В целом,	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
_ · · · · · · · · · · · · · · · · · · ·	опыта)	фрагментарного	· /·	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		