Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

УТВЕРЖДАЮ декан факультета вычислительной математики и кибернетики и кибернетики и кибернетики и кибернетики

жего государовенного П.А. Соколов / университета И.А. Соколов / «27» сентября 2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Параллельные и рапределенные алгоритмы

Уровень высшего образования:

бакалавриат

Направление подготовки / специальность:

02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обу		
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций
ОПК-6. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-6.1. Знает принципы работы современных информационных технологий ОПК-6.2. Использует современные информационные технологии для решения задач профессиональной деятельности	Знать: классические распределенные и современные распределенные вычислительные модели, базовые алгоритмы распределенной обработки информации. Уметь: моделировать сложные распределенные системы, разрабатывать алгоритмы для распределенных алгоритмических моделей, оценивать эффективность распределенных алгоритмов В результате освоения материала курса студент должен компетентно ориентироваться в различных моделях и методах распределенной обработки информации, уметь ставить, анализировать и решать теоретические и практические задачи в этой области информатики.

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

Практическое самостоятельное задание № 1

Распределенная реализация солвера CG для СЛАУ с разреженной матрицей, заданной в формате ELLPACK

Требования к отчету:

Титульный лист, содержащий

- 1.1 Название курса
- 1.2 Название задания
- 1.3 Фамилию, Имя, Отчество(при наличии)
- 1.4 Номер группы

1.5 Дата подачи

Содержание отчета:

- 2. Краткое описание задания и программной реализации
- 2.1 Краткое описание задания
- 2.2 Краткое описание программной реализации как организованы данные, какие функции реализованы (название, аргументы, назначение)

Просьба указывать, как программа запускается с какими параметрами, с описанием этих параметров.

- 3. Исследование производительности
- 3.1 Характеристики вычислительной системы: описание одной или нескольких систем, на которых выполнено исследование.

Использование кластера в этом задании обязательно.

Просьба указывать здесь или в следующих пунктах, как программа компилировалась (каким компилятором, с какими параметрами).

- 3.2 Результаты измерений производительности
- 3.2.1Сравнение МРІ с ОрепМР на многоядерном процессоре.

Для каждой из трех базовых операций и для всего алгоритма солвера сравнить ускорения на разном числе ядер, полученные вМРІ и OpenMP режиме, оценить параллельную эффективность. Достаточно одного размера системы, $N=10^6$. Данные представить в виде таблицы.

- 3.2.2. Параллельное ускорение Измерить MPI ускорение для различных N порядка $10^5, 10^6, \dots$ для каждой из 3-х базовых операций и для всего алгоритма солвера: при фиксированном числе N варьируется число процессов и измеряется параллельное ускорение. Построить графики ускорения.
- 3.2.3. Масштабирование Измерить масштабирование для различных фиксированных N/P порядка $10^4,\,10^5,\,10^6.$ Здесь N/P количество неизвестных на процесс. В этом тесте число N варьируется пропорционально числу процессов, P.

Данные представить в виде таблицы и графика.

Приложение1: исходный текст программы в отдельном c/c++ файле Требования к программе:

- 1 Программа должна использовать MPI для распараллеливания с распределенной памятью, OpenMP или posix threads для многопоточного распараллеливания (которое уже имеется из 1 -го задания)
- 2 Солвер должен корректно работать, т.е. показывать быструю сходимость.
- 3 Распараллеливание должно быть корректно.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме экзамена В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Вопросы к экзамену

- 1. Параллельные алгоритмы сортировки данных. Слияние методом сдваивания, двустороннее слияние. Сети сортировки. Параллельные алгоритмы сортировки для гибридных вычислительных систем.
- 2. Параллельные алгоритмы генерации псевдослучайных чисел. Требования к генераторам псевдослучайных чисел. Линейно-конгруэнтные генераторы. М-последовательности. Достоинства и недостатки генераторов случайных и псевдослучайных чисел.
- 3. Иерархические алгоритмы разбиения графов. Локальное уточнение.
- 4. Метод спектральной бисекции графов.
- 5. Инкрементный алгоритм декомпозиции графов.
- 6. Адаптивное интегрирование. Метод локального стека. Метод глобального стека.
- 7. Отказоустойчивые алгоритмы для многопроцессорных вычислительных систем. Локальные контрольные точки. Локальное исправление ошибок при решении гиперболических систем уравнений.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны	e		
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	В целом,	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
	опыта)	фрагментарного	· /·	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		