Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

декан факудьтета вычислительной математики и кибернетики

/И.А. Соколов / «27» сентября 2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Основы нейросетей

Уровень высшего образования: бакалавриат

Направление подготовки / специальность: 02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обу		
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций
ПК-3. Способен осуществлять концептуальное моделирование проблемной области и проводить формализацию представления знаний в системах искусственного интеллекта	ПК-3.1. Разрабатывает концептуальную модель проблемной области системы искусственного интеллекта ПК-3.2. Выбирает методы представления знаний и проектирует базу знаний системы искусственного интеллекта	Знать Знать алгоритмические основы глубокого обучения, включая новейшие варианты стохастического градиентного спуска и особенности современных сверточных и рекуррентных нейронных сетей Быть в курсе последних разработок в области глубокого обучения для анализа изображений и обработки естественного языка Уметь Уметь Уметь прототипировать, тренировать и применять глубокие архитектуры, включая архитектуры, использующие перенос знаний с предварительно обученных моделей Уметь определять и проектировать новые глубокие архитектуры для нестандартных задач и приложений машинного обучения Владеть Владеть программными пакетами для глубокого обучения (Theano/Lasagne и другие релевантные Руthon- библиотеки)

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

выполнение заданий на практических (семинарски) занятиях

Примеры задач

- Запишите уравнения обратного распространения ошибки (или псевдокод) для слоя f, который принимает на вход N векторов x1,x2,...,xN и возвращает единственные вектор. Соответствующий сумме двух наибольших значений среди входов: y = f(x1,x2,...xN), yi = max 1 <= k, l <= N xki + xlj
- Кратко опишите, почему стохастический градиентный (СГС) спуск с моментом работает лучше обычного СГС.
- Кратко объясните, как можно спроектировать глубокую нейросеть, которая принимает на вход изображение разрешения 256х256 и возвращает попиксельную семантическую сегментацию такого же размера.
- Рассмотрим генеративную сеть с соперником, натренированную для синтезирования изображения размера 32х32. Опишите входы и выходы генератора и дискриминатора (типы, размерности и значение).
- Кратко объясните суть "иерархического нечеткого максимума" и "сэмплирования отрицательных примеров", используемых для обучения представления word2vec. Зачем они нужны? Обсудите положительные и отрицательные стороны двух методов.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме экзамена

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Вопросы к экзамену

- 1. Стохастическая оптимизация. Стохастический градиентный спуск, метод Adagrad, метод ADAM
- 2. Автоматическое дифференцирование: проход вперёд и назад. Вычисление произведения гессиана на произвольный вектор. Алгоритм обратного распространения ошибки.
- 3. Сети прямого распространения. Модель автокодировщика. Примеры применения. Регуляризация в глубоких сетях: Dropout, BatchNormalization.
- 4. Свёрточные нейронные сети. Модели AlexNet, VGG, Inception, ResNet.
- 5. Локализация и детекция объектов на изображении. Методы R-CNN, Fast R-CNN, Faster R-CNN.
- 6. Рекуррентные нейронные сети, процедура обучения. Проблема затухающих и взрывающихся градиентов, способы её решения. Модели LSTM, GRU. Применение рекуррентных сетей для решения практических задач.
- 7. Решение задачи машинного перевода. Модель Seq2seq. Механизм внимания.
- 8. Вероятностные модели со скрытыми переменными, ЕМ-алгоритм. Вероятностная модель главных компонент.
- 9. Модель вариационного автокодировщика. Трюк репараметризации.
- 10. Перенесение стиля на изображениях.
- 11. Обучение с подкреплением. Примеры практических задач. Q-обучение. Модель DQN.
- 12. Обучение политики в обучении с подкреплением. Алгоритм REINFORCE. Подход Actor-Critic.
- 13. Генеративно-состязательные сети. Модель DCGAN. Примеры применения.
- 14. Задача структурного предсказания. Объединение структурного метода опорных векторов и нейронных сетей для задачи классификации последовательностей.

Пример экзаменационного билета

- 1. Сети прямого распространения. Модель автокодировщика. Примеры применения. Регуляризация в глубоких сетях: Dropout, BatchNormalization.
- 2. Обучение с подкреплением. Примеры практических задач. Q-обучение. Модель DQN.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны	e		
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	В целом,	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
	опыта)	фрагментарного	· /·	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		