Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

УТВЕРЖДАЮ декан факультета вычислительной математики и кибернетики упиборские математики и кибернетики и киберне

«27» сентября 2022г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Вероятностные модели

Уровень высшего образования: бакалавриат

Направление подготовки / специальность: 01.03.02 "Прикладная математика и информатика" (3++)

> Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

> > Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2022 года)

Москва 2022

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обучения по дисциплине (модулю)						
Содержание и код компетенции. Индикатор (показатель) достижения компетенции		Планируемые результаты обучения по дисциплине, сопряженные с индикаторами				
ОПК-1. Способен применять	ОПК-1.1 – Облалает	Знать:				
ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1 — Обладает фундаментальными знаниями, полученными в области математических и (или) естественных наук ОПК-1.2 — Умеет использовать их в профессиональной деятельности ОПК-1.3 — Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических знаний	достижения компетенций				
		этих методов. Владеть: навыками оптимального выбора методов и параметров				
		при решении задач анализа и обработки данных;				

ключевыми методами решения
задач статистического анализа
данных;
навыками оптимального
выбора методов и параметров
при решении задач анализа
случайных процессов,
описывающих реальные
процессы и явления.

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

контрольная работа

Примерные контрольные задания.

K3A1.

- 1. Определение вероятностного пространства.
- 2. Неравенство Берри-Эссеена.
- 3. Определение дифференциальной энтропии абсолютно непрерывной случайной величины.
- 4. Определение обобщенного процесса Кокса
- 5. Случайная величина принимает значения 1, 4, 5 и 8 с вероятностями 1/2, 1/4, 1/8 и 1/8 соответственно. Найти ее энтропию.

K3A2.

- 1. Определение и свойства функции распределения.
- 2. Формулировка усиленного закона больших чисел для независимых одинаково распределенных случайных величин.
- 3. Формулировка информационных свойств пуассоновского процесса.
- 4. Определение дважды стохастического пуассоновского процесса.
- 5. Найти дифференциальную энтропию случайной величины, имеющей стандартное нормальное распределение.

КЗА3.

- 1. Определение независимости случайных величин.
- 2. Формулировка теоремы Пуассона.
- 3. Формулировка теоремы переноса для центрированных случайных сумм.
- 4. Определение идентифицируемого семейства смесей.
- 5. Найти коэффициент эксцесса случайной величины, имеющей нормальное распределение с нулевым математическим ожиданием и дисперсией, равной 2.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме зачета

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Вопросы к зачету

- 1. Условия адекватности применимости вероятностных моделей
- 2. Определение вероятностного пространства
- 3. Определение условной вероятности
- 4. Формула полной вероятности
- 5. Формула Байеса
- 6. Определение случайной величины
- 7. Определение и свойства функции распределения
- 8. Определение математического ожидания. Формулы для вычисления в дискретном и абсолютно непрерывном случаях
 - 9. Определение квантили функции распределения случайной величины
- 10. Определение моды случайной величины в дискретном и абсолютно непрерывном случаях
- 11. Определение дисперсии случайной величины. Формулы для вычисления в дискретном и абсолютно непрерывном случаях
 - 12. Определение интерквартильного размаха
 - 13. Определение независимости п событий
 - 14. Определение независимости случайных величин
 - 15. Определение ковариации и корелляции
 - 16. Формулировка теоремы Муавра-Лапласа.
- 17. Формулировка усиленного закона больших чисел для независимых одинаково распределенных случайных величин
- 18. Формулировка центральной предельной теоремы для независимых одинаково распределенных случайных величин
 - 19. Неравенство Берри-Эссеена
 - 20. Формулировка условия Линдеберга
 - 21. Формулировка теоремы Пуассона
 - 22. Определение устойчивого распределения
 - 23. Формулировка теоремы Леви
 - 24. Определение безгранично делимого распределения
 - 25. Формулировка теоремы Хинчина
 - 26. Определение информации (по Шеннону)
 - 27. Определение энтропии эксперимента. Основные свойства энтропии
- 28. Определение дифференциальной энтропии абсолютно непрерывной случайной величины
- 29. Формулировка теоремы о распределениях с наибольшей дифференциальной энтропией
- 30. Определение случайного процесса. Определения процессов с независимыми приращениями и однородных процессов
 - 31. Определение пуассоновского процесса
 - 32. Формулировка информационных свойств пуассоновского процесса
 - 33. Формулировка центральной предельной теоремы для пуассоновского процесса
 - 34. Определение и основные свойства случайных сумм
 - 35. Геометрическая случайная сумма. Формулировка теоремы Реньи

- 36. Формулировка теоремы переноса для нецентрированных случайных сумм
- 37. Формулировка теоремы переноса для центрированных случайных сумм
- 38. Формулировка аналога теоремы Пуассона для случайных сумм случайных индикаторов
 - 39. Определение смеси распределений
 - 40. Определение идентифицируемого семейства смесей
 - 41. Определение неоднородного пуассоновского процесса
 - 42. Определение дважды стохастического пуассоновского процесса
 - 43. Определение обобщенного процесса Кокса
 - 44. Формулировка центральной предельной теоремы для обобщенных процессов Кокса
- 45. Формулировка критерия сходимости одномерных распределений обобщенных процессов Кокса к строго устойчивым законам
 - 46. Формулировка закона больших чисел для обобщенных процессов Кокса
- 47. Определение коэффициента эксцесса. Свойство коэффициента эксцесса масштабных смесей нормальных законов
- 48. Оценка равномерного расстояния между смесями нормальных законов через равномерное расстояние между смешивающими распределениями.
 - 49. Определение расстояния Леви
- 50. Оценка расстояния Леви между вырожденным распределением и двухточечным смешивающим распределением через расстояние Леви между чистым нормальным законом и двухкомпонентной смесью нормальных законов (масштабная смесь)
- 51. Оценка расстояния Леви между вырожденным распределением и двухточечным смешивающим распределением через расстояние Леви между чистым нормальным законом и двухкомпонентной смесью нормальных законов (сдвиговая смесь)

Пример билета

- 1. Формула полной вероятности
- 2. Определение расстояния Леви

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны			
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	· ·	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
	опыта)	фрагментарного	` '	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		