Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

> УТВЕРЖДАЮ декан факультета вычислительной математики и кибернетики

> > _____/И.А. Соколов / «27» сентября 2022г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Электродинамика

Уровень высшего образования: бакалавриат

Направление подготовки / специальность: 01.03.02 "Прикладная математика и информатика" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2022 года)

Москва 2022

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обу		
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций
ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1 — Обладает фундаментальными знаниями, полученными в области математических и (или) естественных наук ОПК-1.2 — Умеет использовать их в профессиональной деятельности ОПК-1.3 — Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических знаний	Знать определения физических понятий и размерности физических величин Уметь формулировать законы фундаментальной электродинамики Владеть математическим аппаратом фундаментальной электродинамики

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

опрос

Список контрольных вопросов для проверки текущей успеваемости

- 1. Фундаментальные свойства электрического заряда. Закон сохранения заряда. Сформулируйте Закон Кулона.
- 2. Дайте определение напряженности электрического поля. Сформулируйте принцип суперпозиции электрических полей.
- 3. Электростатическая теорема Гаусса. Напряженности электростатического поля равномерно заряженных сферы и бесконечной плоскости.
- 4. Как определяется потенциал электрического поля.
- 5. Запишите формулы для потенциала электрического поля дискретного и непрерывного распределений заряда.
- 6. Запишите формулу, показывающую локальную связь между потенциалом и напряженностью электрического поля.
- 7. Что такое электрический диполь. Чему равны потенциал и напряженность поля электрического диполя.

- 8. Чему равна циркуляция вектора напряженности электростатического поля. Приведите доказательство для системы точечных зарядов.
- 9. Чему равен ротор вектора напряженности электростатического поля. Приведите доказательство для системы точечных зарядов.
- 10. Запишите уравнения Пуассона и Лапласа для потенциала электростатического поля.
- 11. Свободные и связанные заряды в веществе.
- 12. Что такое электрическая индукция поля.
- 13. Сформулируйте теорему Гаусса для электрической индукции в интегральной и дифференциальной формах.
- 14. Материальные уравнения для электрического поля, диэлектрические восприимчивость и проницаемость.
- 15. Взаимная энергия системы точечных зарядов. Формулы для энергии электростатического поля и ее объемной плотности.
- 16. Закон Ома для участка цепи и его дифференциальная форма. Закон Джоуля-Ленца и его дифференциальная форма.
- 17. Сформулируйте правила Кирхгофа.
- 18. Запишите закон взаимодействия элементов тока закон Ампера. Запишите закон Био-Савара-Лапласа.
- 19. Сформулируйте теорему о циркуляции вектора магнитной индукции в интегральной и дифференциальной формах.
- 20. Сформулируйте теорему Гаусса для магнитного поля в интегральной и дифференциальной формах
- 21. Что такое векторный потенциал. Как он связан с магнитной индукцией. Свойства векторного потенциала.
- 22. Сила Лоренца и характер движения заряда в постоянных электрическом и магнитном полях.
- 23. Сформулируйте закон электромагнитной индукции Фарадея и правило Ленца.
- 24. В чем заключается явление самоиндукции.
- 25. Чему равны собственная энергия проводника с током и энергия системы замкнутых токов.
- 26. Запишите формулы для энергии магнитного поля и ее объемной плотности.
- 27. Молекулярные токи и вектор намагниченности. Дайте определение вектора напряженности магнитного поля.
- 28. Сформулируйте теорему о циркуляции вектора напряженности магнитного поля (в интегральной и дифференциальной формах).
- 29. Что такое ток смещения.
- 30. Запишите уравнения Максвелла в дифференциальной и интегральной формах.
- 31. Запишите уравнения Максвелла в интегральной форме.
- 32. Дайте определение и запишите выражение для вектора Умова-Пойнтинга.
- 33. Получите волновое уравнение из системы уравнений Максвелла. Что такое плоская волна. Ее свойства.
- 34. Чему равны плотность потока энергии, плотность потока импульса и плотность потока момента импульса электромагнитной волны.
- 35. Излучение электромагнитных волн диполем. Зависимость излучаемой мощности от частоты.
- 36. Дайте определение квазистационарных электромагнитных процессов.
- 37. Собственные и вынужденные колебания в колебательном контуре. Формулы для амплитуды и фазы.

- 38. Опишите и обоснуйте метод комплексных амплитуд.
- 39. В чем заключается скин-эффект. Чему равна толщина скин-слоя в простейших случаях.
- 40. Постулаты теории относительности. Преобразования Лоренца для напряженностей электрического и магнитного полей.
- 41. Четырехвекторы и четырехтензоры в специальной теории относительности. Приведите примеры.
- 42. Тензор электромагнитного поля.
- 43. Инвариантная запись уравнений электродинамики.
- 44. Релятивистская природа силы Лоренца.
- 45. Инварианты электромагнитного поля.

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме зачет

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Список вопросов к зачёту по курсу (дисциплине) Электродинамика:

- 1. Электромагнитное взаимодействие и его место среди других взаимодействий в природе. Закон сохранения электрического заряда.
- 2. Закон Кулона.
- 3. Вектор напряженности электрического поля. Принцип суперпозиции. Электростатическая теорема Остроградского–Гаусса.
- 4. Потенциальность электростатического поля. Связь вектора напряженности электростатического поля и потенциала.
- 5. Работа сил электростатического поля. Потенциал системы зарядов.
- 6. Теорема о циркуляции вектора напряженности электрического поля. Уравнения Пуассона и Лапласа. Электрический диполь.
- 7. Проводники в электростатическом поле. Распределение заряда по поверхности проводника. Связь между зарядом и потенциалом проводника. Электроемкость. Конденсаторы.
- 8. Диэлектрики. Свободные и связанные заряды. Вектор поляризации. Связь вектора поляризации со связанными зарядами.
- 9. Вектор электрической индукции в диэлектрике. Материальное уравнение для векторов электрического поля.
- 10. Теорема Остроградского Гаусса для диэлектриков. Ее дифференциальная форма.
- 11. Граничные условия для векторов напряженности и электрической индукции.
- 12. Взаимодействие токов. Элемент тока. Закон Био Савара Лапласа. Вектор индукции магнитного поля. Закон Ампера. Сила Лоренца.
- 13. Теорема о циркуляции вектора индукции магнитного поля. характер магнитного поля. Векторный потенциал.
- 14. Элементарный ток и его магнитный момент. Магнитное поле элементарного тока. Вектор намагниченности вещества и его связь с молекулярными токами.
- 15. Вектор напряженности магнитного поля. Материальное уравнение для векторов магнитного поля. Диамагнетики, парамагнетики и ферромагнетики.
- 16. Электромагнитная индукция. Закон электромагнитной индукции Фарадея и его дифференциальная форма. Правило Ленца. Явление самоиндукции и взаимной индукции.
- 17. Система уравнений Максвелла. Ток проводимости и ток смещения. Высокочастотные токи. Скин-эффект.
- 18. Постоянный электрический ток. Плотность тока. Условие стационарности тока. Электрическое напряжение. Закон Ома в дифференциальной форме.
- 19. Токи в сплошных средах. Закон Джоуля Ленца. Правила Кирхгофа.
- 20. Условия квазистационарности. Переходные процессы в RC- и LC-цепях.
- 21. Собственные колебания в контуре. Затухающие колебания. Вынужденные колебания в контуре. Метод комплексных амплитуд. Резонанс напряжений.
- 22. Электромагнитные волны. Волновое уравнение. Скорость электромагнитных волн.
- 23. Плоские и сферические гармонические электромагнитные волны в непроводящей среде. Связь векторов напряженности электрического и магнитного поля и волнового вектора в плоской волне.
- 24. Поляризация электромагнитной волны. Отражение электромагнитных волн.

- 25. Стоячая электромагнитная волна. Давление электромагнитной волны.
- 26. Условие калибровки Лоренца. Неоднородное волновое уравнение для векторного и скалярного потенциалов. Их решения в виде запаздывающих и опережающих потенциалов. Дипольное приближение.
- 27. Излучение точечного диполя. Электромагнитное поле в ближней и дальней волновой зоне. Диаграмма направленности и полная мощность излучения.
- 28. Энергия системы покоящихся электрических зарядов. Энергия электростатического поля и ее объемная плотность.
- 29. Энергия системы стационарных токов. Энергия стационарного магнитного поля и ее объемная плотность.
- 30. Плотность энергии нестационарного электромагнитного поля. Вектор Умова-Пойнтинга. Закон сохранения энергии в электродинамике. Плотность и поток энергии в плоской электромагнитной волне.
- 31. Импульс и момент импульса электромагнитного поля. Законы сохранения импульса и момента импульса электромагнитного поля.
- 32. Уравнения электродинамики и преобразования Галилея. Опыт Майкельсона-Морли.
- 33. Принцип относительности Эйнштейна и постулаты теории относительности. Преобразования Лоренца
- 34. Четырех-векторы и четырех тензоры.
- 35. Релятивистски-инвариантная запись закона сохранения заряда и уравнений Максвелла. Релятивистски-инвариантная запись уравнений электродинамики в потенциалах.
- 36. Электромагнитные волны в движущейся среде. Эффект Доплера. Инварианты электромагнитного поля.

Типовые задачи

Электрическое поле. Уравнения электростатики.

Точечный заряд q находится на расстоянии a от центра проводящей сферы радиусом R (a>R). Заряд сферы равен Q. Найдите силу, действующую на заряд q.

Тонкая палочка длиной l заряжена равномерно с линейной плотностью κ . Найдите напряженность электрического поля, создаваемого зарядом на палочке, в произвольной точке пространства M.

Проводники и диэлектрики в электрическом поле.

Заряд q распределен по металлической сфере радиусом R. Сфера окружена шаровым слоем диэлектрика толщиной R. Чему равна полная энергия электрического поля, создаваемого зарядом во всем пространстве, если диэлектрическая проницаемость диэлектрика равна ε ?

Диэлектрический шар радиусом R равномерно заряжен по объему. Объемная плотность заряда равна ρ , диэлектрическая проницаемость материала шара - ε . Найдите потенциал поля, создаваемого шаром.

Магнитное поле в вакууме и веществе.

Проводящая сфера радиуса R заряжена с поверхностной плотностью σ . Сфера вращается вокруг оси симметрии с угловой скоростью ω . Найдите индукцию магнитного поля на оси вращения.

По бесконечному прямолинейному цилиндрическому проводу радиусом R течет ток I, равномерно распределенный по сечению проводника. Найдите напряженность магнитного поля H как функцию расстояния от оси провода

Закон электромагнитной индукции.

Бесконечный прямой провод и квадратная рамка со стороной a и полным сопротивлением R расположены в одной плоскости так, что провод проходит параллельно одной из сторон рамки на расстоянии d от нее. Сила тока в проводе изменятся по закону $I_1(t) = \alpha t^3$, где $\alpha = \mathrm{const}$. Найдите зависимость силы тока в рамке от времени.

По двум металлическим параллельным рейкам, расположенным в горизонтальной плоскости и замкнутым на конденсатор емкостью C, может без трения двигаться металлический стержень массой m и длиной l. Вся система находится в однородном магнитном поле с индукцией B, направленной вверх. К середине стержня перпендикулярно ему и параллельно рейкам приложена сила F. Определить ускорение a стержня. Сопротивлением реек, стержня и подводящих проводов пренебречь. В начальный момент скорость стержня равна нулю.

Уравнения Максвелла.

Заряженный и отключенный от источника плоский конденсатор с круглыми пластинами медленно разряжается объемными токами проводимости, возникающими в диэлектрике между обкладками из-за наличия слабой проводимости. Пренебрегая краевыми эффектами, вычислите напряженность магнитного поля внутри конденсатора.

В проводнике, помещенном в нестационарное магнитное поле, циркулируют токи Фуко. Линии тока представляют собой окружности, центры которых лежат на оси 0_Z , причем зависимость плотности тока от времени t и от расстояния r рассматриваемой точки проводника до оси 0_Z описывается законом $j(r,t) = k r e^{-t/\tau}$. Определите индукцию магнитного поля в проводнике, если известно, что в момент времени t=0 она была равна нулю во всем объеме проводника.

Электрические цепи. Квазистационарные токи:

Сопротивление состоит из трех элементов, соединенных треугольником: $R_{12}=2$ Ом, $R_{23}=4$ Ом и $R_{31}=5$ Ом. Токи, притекающие извне к двум из его вершин: $I_1=4,5$ А, $I_2=1,5$ А. Найдите потенциалы вершин φ_1 и φ_2 , если потенциал $\varphi_3=0$.

Два гальванических элемента с ЭДС \mathbf{E}_1 и \mathbf{E}_2 и внутренними сопротивлениями r_1 и r_2 соединены параллельно. Найдите ЭДС и внутреннее сопротивление полученной батареи.

Электромагнитные волны:

Плоская монохроматическая световая волна распространяется в вакууме. Максимальное значение напряженности магнитного поля этой волны — H_0 . Какова средняя (за период) энергия, переносимая волной в единицу времени через поверхность полусферы радиуса R, основание которой перпендикулярно направлению распространения волны?

Плоская монохроматическая световая волна с интенсивностью I_0 падает под углом θ_I на плоскую границу раздела сред, показатели преломления которых равны n_I и n_2 . Найдите интенсивность волны, отраженной от границы раздела, и интенсивность волны, прошедшей во вторую среду, при условии, что в падающей волне колебания вектора напряженности электрического поля происходят в плоскости падения.

Теория излучения:

Определить, во сколько раз отличаются плотности потока энергии, излучаемой диполем Герца, под углами $\theta=90^\circ$ и $\theta=45^\circ$.

Выведите формулу для напряженности электрического поля электромагнитной волны, излучаемой зарядом q, колеблющимся с частотой ω вдоль некоторой прямой. Амплитуда колебаний заряда — X_0 .

Энергия, импульс и момент импульса электромагнитного поля:

Плоская монохроматическая электромагнитная волна нормально падает из вакуума на плоскую поверхность проводника. Чему равно среднее (за период) давление этой волны на проводник, если интенсивность волны – I? Считать, что волна полностью поглощается.

Заряд q расположен на металлической сфере радиусом R. Сфера окружена шаровым слоем диэлектрика толщиной R. Чему равна полная энергия электрического поля, создаваемого зарядом во всем пространстве, если диэлектрическая проницаемость диэлектрика равна ε ?

Электродинамика теории относительности.

В некоторой системе отсчета электрическое и магнитное поля перпендикулярны друг другу. Найти систему отсчета, в которой есть только электрическое или только магнитное поле. всегда ли задача имеет решение и единственно ли оно?

Вычислите компоненты 4-мерного ускорения. Показать, что 4-мерное ускорение ортогонально 4-мерной скорости.

Результат обучения связан со знанием определений физических понятий, размерностей физических величин и умением формулировать законы механики и электродинамики.

Пример билета.

- 1. Система уравнений Максвелла. Ток проводимости и ток смещения. Высокочастотные токи. Скин-эффект.
- 2. Условия квазистационарности. Переходные процессы в RC- и LC-цепях.
- 3. Заряженный и отключенный от источника плоский конденсатор с круглыми пластинами медленно разряжается объемными токами проводимости, возникающими в диэлектрике между обкладками из-за наличия слабой проводимости. Пренебрегая краевыми эффектами, вычислите напряженность магнитного поля внутри конденсатора.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны			
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	· ·	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
	опыта)	фрагментарного	` '	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		