Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.Р. Поможавания

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

УТВЕРЖДАЮ

декан факультета вычислительной

математики и кибернетики

вычислитель (Грага Анти Соколов /
и кибернетики. Соколов /
и киберн

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Методы и системы обработки больших данных

Уровень высшего образования:

бакалавриат

Направление подготовки / специальность: 02.03.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект и анализ данных

Форма обучения:

очная

Рассмотрен и утвержден на заседании Ученого совета факультета ВМК (протокол №7, от 27 сентября 2023 года)

Москва 2023

1. ФОРМЫ И ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе и по завершении изучения дисциплины оценивается формирование у студентов следующих компетенций:

Планируемые результаты обучения по дисциплине (модулю)						
Содержание и код компетенции.	Индикатор (показатель) достижения компетенции	Планируемые результаты обучения по дисциплине, сопряженные с индикаторами достижения компетенций				
ПК-8. Способен разрабатывать	ПК-8.1. Разрабатывает	ПК-8.1. 3-1. Знает				
системы анализа больших	программные компоненты	общедоступные репозитории				
данных	извлечения, хранения,	и				
	подготовки больших данных с	специализированные				
	учетом вариантов	библиотеки, содержащие				
	использования больших	наборы больших данных				
	данных, определений, словарей	ПК-8.1. 3-2. Знает принципы				
	и эталонной архитектуры	работы экосистемы Hadoop,				
	больших данных	фреймворка SPARK				
	ПК-8.2. Разрабатывает	ПК-8.1. 3-3. Знает				
	программные компоненты обработки, удаленной,	устройство интерфейсов между				
	распределенной и	реляционными SQL-				
	объединенной аналитики,	хранилищами данных и				
	использования результатов	нереляционными NoSQL-				
	анализа, описания и управления	хранилищами данных				
	качеством и достоверностью	ПК-8.1. 3-4. Знает предметно-				
	больших данных	ориентированные языки ПК-8.1. У-1. Умеет				
		настраивать и				
		оптимизировать				
		конфигурацию программного				
		и аппаратного обеспечения с				
		целью интеграции больших				
		данных ПК-8.1. У-2. Умеет				
		разрабатывать программное				
		обеспечение для очистки и				
		валидации наборов больших				
		данных				
		ПК-8.1. У-3. Умеет выполнять				
		потоковую обработку данных				
		(data streaming, event				
		processing) ПК-8.1. У-4. Умеет				
		использовать шины данных				
		(Apache Kafka) ПК-8.1. У-5.				
		Умеет использовать языки				
		запросов, в том числе				
		нереляционных, для				
		поддержки различных типов				
		данных (например, XML, RDF, JSON, мультимедиа) и				
		ког, лооп, мультимедиа) и				

операций с большими данными (например, матричные операции) ПК-8.2. 3-1. Знает принципы и методы анализа больших данных, включая спецификации и стандартизацию метаданных ПК-8.2. 3-2. Знает устройство и принципы работы систем обработки и анализа больших массивов данных (SQL. NoSQL, Hadoop, ETL) ПК-8.2. 3-3. Знает архитектуру и принципы работы промышленных решений, созданных на основе искусственного интеллекта ПК-8.2. 3-4. Знает методы и технологии машинного обучения на больших данных ПК-8.2. У-1. Умеет разрабатывать программное обеспечение для анализа больших данных. ПК-8.2. У-2. Умеет разрабатывать программные и технические средства визуализации больших данных и результатов их анализа. ПК-8.2. У-3. Умеет использовать системы обработки и анализа больших массивов данных (SQL, NoSQL, Hadoop, ETL процессы и инструменты) ПК-8.2. У-4. Умеет использовать технологии науки о данных и больших данных в разработке для решения практических задач промышленности ПК-8.2. У-5. Умеет описывать и управлять качеством и достоверностью больших данных

1.1. Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется путем оценки результатов выполнения заданий практических (семинарских) занятий, самостоятельной работы, предусмотренных учебным планом и посещения занятий/активность на занятиях.

В качестве оценочных средств текущего контроля успеваемости предусмотрены:

Практические занятия

- 1. Работа с изображениями на платформе Python.
- 2. Детектирование объектов и сегментация изображения с использованием библиотек Python
- 3. Распознавание лиц с помощью MTCNN
- 4. Распознавание эмоший
- 5. Рекуррентные нейронные сети
- 6. Работа с графами в Neo4J

Примеры тестовых заданий

Вопрос №1. Укажите свойства и функции, которыми **не** обладает движок обработки данных Apache Spark

- 1. поддержка языков программирования Java, Scala, Python
- 2. высокое быстродействие (по сравнению с Hadoop MapReduce)
- 3. сохранение на диск всех промежуточных результатов для возможности восстановления после сбоя
- 4. небольшие требования к процессору и объему оперативной памяти

Вопрос №2. Какие операции Apache Spark в общем случае приведут к полному перераспределению (shuffle) данных по узлам кластера

- 1. map()
- 2. repartition()
- 3. coalesce()
- 4. sortBy()

Вопрос №3. Укажите сценарии, для которых применим Apache Spark

- 1. Чтение данных из реляционной базы данных, конвертация в Avro-формат, сжатие в GZIP и сохранение на HDFS
- 2. Соединение (JOIN) данных из таблицы в Oracle Datavse и файла в формате Excel
- 3. Запуск задач обработки данных по расписанию
- 4. Тестирование данных на обученной модели
- 5. Буферизация потока данных для равномерной загрузки кластера

Вопрос №4. Выберите этапы обработки данных, которые могут быть применимы до обучения модели:

- 1. Преобразование в табличный формат
- 2. Удаление некорректных данных
- 3. Замена слов на синонимы
- 4. Визуализация данных в виде графика

Вопрос №5. Выберите возможные методы нормализации при анализе текста на естественном языке:

- 1. Стемминг
- 2. TF-IDF
- 3. Удаление stop-слов
- 4. Замена слов на синонимы

Вопрос №6. Какие из следующих программных продуктов предназначены для машинного обучения на больших данных

- 1. Apache Hadoop
- 2. Apache SparkML

- 3. Skikit-learn
- 4. H2O
- 5. Tensorflow

Вопрос №7. Укажите способ (название графика), позволяющий определить качество обучения методом бинарной классификации

Ответ: ROС-кривая

Вопрос №8. Выберите способы борьбы с переобучением из следующего списка:

- 1. Ускорение вычислений с помощью графического процессора (GPU)
- 2. Регуляризация
- 3. Увеличение набора данных для обучения
- 4. Кросс-валидация

Вопрос №9. Назовите набор данных, необходимый для проверки качества обучения

Образцы заданий к практическим занятиям:

Задание 1. Работа с изображениями

- Откалибровать Web-камеру
- Записать себя с Web-камеры в файл с отрисованной с помощью cv2 рамкой вокруг найденного лица

Задание 2. Распознавание эмоций

- Возьмите за основу блокнот https://www.kaggle.com/ashishpatel26/tutorial-facial-expression-classification-keras
- Вместо 6 эмоций вернуться к 7
- Обучить сеть

import pandas as pd

- Превратить задачу классификации в задачу регрессии
- Улучить исходные результат за счет дополнения (augmentation): выравнивание по линии глаз, повороты, масштабирование и т.д.
- (Опционально) использовать Resnet (HINT: используйте не готовую Resnet, а найдите её реализацию, которая позволяет работать с изображениями произвольного размера. Если для выставить разрешение 96х96х3, то масштабирование от 48х48х1 будет произведено с минимальными потерями

Задание 3. Прогнозирование развития эпидемий

К данному моменту накоплено достаточное количество данных по распространению COVID-19:

https://github.com/CSSEGISandData/COVID-19\">CSSEGISandData/COVID-19

```
SITE = "https://raw.githubusercontent.com/"
REPO = "CSSEGISandData/COVID-19/master/
DIR = "csse_covid_19_data/csse_covid_19_time_series
FILE = "time_series_covid19_confirmed_global.csv"

df_cov = pd.read_csv(SITE + REPO + DIR + FILE)
rus_zero_offset = 10
rus_cov = df_cov[ df_cov['Country/Region'] == 'Russia'].drop(
    columns=['Province/State', 'Country/Region', 'Lat', 'Long']).stack()
    rus_cov.iloc[10:].head()
```

Также существуют хорошие модели развития эпидемий:

https://nplus1.ru/material/2019/12/26/epidemic-math

В наибольшей степени данную эпидемию (возможно!) описывают модели SEIR/SEIRS: https://www.idmod.org/docs/hiv/model-seir.html Ваша задача:

- * отладить (найти и взять работающую) более-менее адекватную ситуации модель
- * взять данные по нескольким странам из открытых данных
- * обучить на этих данных (как на данных модели, так и данных) RNN-модель (лучше с хорошей памятью,например, стандартную LSTM)
- * подавая её на вход данные, получить прогнозы динамики по другим странам

Основное, над чем надо подумать (и что будет оцениваться):

* Как отражать в RNN-модели разные подходы к течению эпидемии, которые используются в моделях SEIR/SEIRS.

В качестве дополнительного задания тем, кому интересно:

- * Посмотрите на спектральные характеристики разных вариантов развития. Можете ограничиться преобразованием Фурье, можете использовать вейвлеты https://pywavelets.readthedocs.io/en/latest/
- * попробуйте использовать сверточные сети; иначе говоря, рассматривайте модели и данные эпидемий, как вход "изображения" для 1D-свертки и посмотрите, что у Вас получится

Задание 4. Работа с данными, представленными в виде графов

- Предложить свой dataset или выбрать из предложенных на https://mai.moscow/pages/viewpage.action?pageId=57802958
- Разработать объектную модель представления графа на java\scala\python
- Загрузить выбранный dataset
- Реализовать любой из алгоритмов bfs\dfs\Dijkstra

1.2. Промежуточная аттестация

Промежуточная аттестация осуществляется в форме зачет

В качестве средств, используемых на промежуточной аттестации предусматривается: Билеты

1.3. Типовые задания для проведения промежуточной аттестации

Вопросы к зачету

- 1. Дайте определение большим данным, машинному обучению. Назовите области применения и примеры приложений.
- 2. Опишите схему разработки приложения для машинного обучения больших данных с примером.
- 3. Назовите основные этапы обработки сырых данных перед обучением. Приведите примеры.
- 4. Назовите основные классы алгоритмов машинного обучения с примерами.
- 5. Алгоритмы машинного обучения. Способы распараллеливания на примере «случайного леса».
- 6. Алгоритмы машинного обучения. Способы распараллеливания на примере градиентного бустинга.
- 7. Архитектура Apache Spark.
- 8. Глубокие нейронные сети. Пример
- 9. Анализ естественно-языковых текстов. Токенизация, стоп-слова, векторизация.
- 10. Анализ естественно-языковых текстов. TF-IDF.
- 11. Анализ больших данных, представленных в виде графа. Основные понятия, примеры.
- 12. Анализ больших данных, представленных в виде графа. Основные алгоритмы, примеры.
- 13. Назовите особенности анализа потоковых данных с примером.

2. КРИТЕРИИ ОЦЕНКИ ПО ДИСЦИПЛИНЕ

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине						
Оценка	2 (не зачтено)	3 (зачтено)	4 (зачтено)	5 (зачтено)		
виды оценочных средств						
Знания	Отсутствие	Фрагментарные	Общие, но не	Сформированны		
(виды оценочных средств:	знаний	знания	структурированны	e		
приведены в п. 1.2.)			е знания	систематические		
				знания		
Умения	Отсутствие	В целом успешное,	В целом	Успешное и		
(виды оценочных средств:	умений	но не	успешное, но	систематическое		
приведены в п. 1.2.)		систематическое	содержащее	умение		
		умение	отдельные			
			пробелы умение			
			(допускает			
			неточности			
			непринципиальног			
			о характера)			
Навыки	Отсутствие	Наличие	В целом,	Сформированны		
(владения, опыт	навыков	отдельных навыков	сформированные	е навыки		
деятельности)	(владений,	(наличие	навыки	(владения),		
_ · · · · · · · · · · · · · · · · · · ·	опыта)	фрагментарного	· /·	применяемые		
приведены в п. 1.2)		опыта)	используемые не в	при решении		
			активной форме	задач		