Федеральное государственное бюджетное образовательное учреждение высшего образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА» ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

Фекультерт

Вычислительной мотентиру

ТВЕРЖАТАТО

московского государственного

Декан факультета ВМК МГУ Академик

«14» сентября 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Асимптотические методы математической статистики Asymptotic methods for mathematical statistics

Программа (программы) подготовки научных и научно-педагогических кадров в аспирантуре

102.01.00.112-фмн-кфап, 102.01.00.122-фмн-кмф, 102.01.00.122-фмн- кски,

102.01.00.235-фмн- кски, 102.01.00.112-фмн-ком, 102.01.00.122-фмн-кани

102.01.00.112-фмн-кса, 102.01.00.122-фмн-кса, 102.01.00.112-фмн-кндсипу,

102.01.00.122-фмн- кндсипу, 102.01.00.114-фмн- кмс, 102.01.00.115-фмн- кммп

102.01.00.115-фмн- кмк, 102.01.00.123-фмн- кмк, 102.01.00.116-фмн- квтм,

102.01.00.122-фмн- квтм, 102.01.00.116-фмн- квм, 102.01.00.122-фмн- квм, 102.01.00.122-фмн- коу.

102.01.00.112-фмн- коу, 102.01.00.123-фмн- кио, 102.01.00.122-фмн- кио, 102.01.00.235-фмн- киит,

102.01.00.235-фмн-касвк, 102.01.00.235-фмн-ксп, 102.01.00.235-фмн-киб,

102.01.00.236-фмн-киб, 102.01.00.235-фмн-кая

Рабочая программа дисциплины разработана в соответствии с Приказом Ректора МГУ №1216 от 24 ноября 2021 года «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых Московским государственным университетом имени М.В. Ломоносова»

1. Краткая аннотация:

Название дисциплины Асимптотические методы математической статистики

Цель изучения дисциплины –Данный курс посвящен некоторым важным разделам теории вероятностей математической статистики, которые затрагиваются соответствующем стандартном курсе и которые важны как в теоретическом аспекте, так и для приложений. А именно, асимптотические методы теории вероятностей и математической статистики играют важнейшую роль в приложениях, касающихся обработки данных, финансовой и актуарной математиках и т.п., поскольку при асимптотическом подходе предельные распределения слабо зависят от характеристик исходных объектов и поэтому могут быть единообразно изучены. Классическим примером является Центральная Предельная Теорема, в которой универсальный нормальный закон. Рассматриваются вопросы уточнения и применения в математической статистике предельных теорем теории вероятностей.

- 2. Уровень высшего образования –аспирантура
- 3. Научная специальность 1.1.4. *«Теория вероятностей и математическая статистика»*. область науки: Физико-математические науки.
- 4. Место дисциплины (модуля) в структуре Программыаспирантуры-элективный курс.
- 5. Объем дисциплины (модуля) составляет 2зачетные единицы, всего 108 часов, из которых 28 часа составляет контактная работа студента с преподавателем (24 часов занятия лекционного типа, 4 часов мероприятия текущего контроля успеваемости и промежуточной аттестации),80 часа составляет самостоятельная работа учащегося.
- 6. Входные требования для освоения дисциплины (модуля), предварительные условия.

На предыдущих уровнях высшего образования должны быть освоены общие курсы:

- 1. Математический анализ
- 2. Функциональный анализ
- 3. Теория вероятностей
- 4. Математическая статистика
- 5. Линейная алгебра.

7. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	Всего	В томчисле									
	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы изних							Самостоятельная работа обучающегося, часы из них		
		Занятиялекционно готипа	Занятиясеминарско готипа	Групповыеконсуль тации	Индивидуальныек онсультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выполнениедомаш нихзаданий	Подготовка к коллоквиумам	Всего	
Тема 1. Асимптотические разложения в Центральной Предельной Теореме Асимптотические разложения типа Эджворта и Корниша-Фишера. Дискретный и непрерывный случаи. Оценки остаточного члена.	16	6	2	-	-		8	8	-	8	

Тема 2. Многомерный нормальный закон	8	4	-	-	-	-	4	4	-	4
Определение многомерного нормального распределения и его основные свойства. Распределения линейных и квадратичных форм от нормальных случайных величин.										
Тема 3. Функция полезности и ее применения в страховании	12	6	-	-	-	-	6	6	-	6
Определение и основные свойства функции полезности, применение ее при оптимальном поведении. Использовании асимптотических разложений для аппроксимации оптимальных стратегий.										
Тема 4. Модель Эрроу оптимального поведения игрока Описание модели Эрроу.	18	8	2	-	-		8	8	-	8
Доказательство оптимальности. Аппроксимация оптимальной										

стратегии игрока (асимптотические франшизы).						
Промежуточная аттестация: <u>зачет</u> (экзамен)	22					56
Итого	108					

8. Образовательные технологии.

При проведении лекционных занятий предусматривается использование информационных технологий, включающих пакеты математических программ: MATLAB, MATHEMATICA и др. Использование информационных технологий осуществляется, в частности, в процессе реализации активных и интерактивных форм проведения занятий. При чтении лекций в качестве материала, иллюстрирующего возможности математического моделирования в различных ситуациях, активно используются примеры из практики обработки данных в процессе исследований в предметной области. Информационные и интерактивные технологии используются при обсуждении проблемных и неоднозначных вопросов, требующих выработки решения в ситуации неопределенности.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Самостоятельная работа учащихся состоит в изучении лекционного материала, учебнометодической литературы, подготовки к текущему контролю и промежуточной аттестации.

Литература для самостоятельной работы студентов в соответствии с тематическим планом.

Тема 1 «Асимптотические разложения в Центральной Предельной Теореме»

- ✓ Феллер В. Введение в теорию вероятностей и ее применения, т.1, М.: Мир, 1984.
- ✓ Феллер В. Введение в теорию вероятностей и ее применения, т.2, М.: Мир, 1984.

Тема 2 «Многомерный нормальный закон»

✓ Андерсон Т. Введение в многомерный статистический анализ, М.: ИЛ, 1963.

Тема 3 «Функция полезности и ее применения в страховании»

Бенинг В.Е.Элементы теории риска и принятия решений, М.: Макс Пресс, 2020.

Тема 4 «Модель Эрроу оптимального поведения игрока»

Бенинг В.Е.Элементы теории риска и принятия решений, М.: Макс Пресс, 2020. Бенинг В.Е., Захарова Т.В. Лекции по дополнительным главам математической статистики, М.:Альтекс, 2017.

10. Ресурсноеобеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература:

- 1. Бенинг В.Е.Элементы теории риска и принятия решений, М.: Макс Пресс, 2020.
- 2. Бенинг В.Е., Захарова Т.В. Лекции по дополнительным главам математической статистики, М.: Альтекс, 2017.

3. Пикулин В.П., Похожаев С.И. Практический курс по уравнениям математической физики. М.: Наука, 1995.

Дополнительная литература:

- 1. Лоэв М. Теория вероятностей. М.: ИЛ, 1962.
- 2. Петров В.В. Суммы независимых случайных величин. М.: Наука, 1972.
- 3. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. М.: Наука, 1985.
 - Перечень используемых информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы (при необходимости):

http://elibrary.ru www.scopus.com

- Описаниематериально-техническойбазы. Занятия проводятся в аудитории, оснащенной мультимедийным экраном
- 11. Язык преподавания русский
- 12. Преподаватели:

Степень, должность ФИО., e-mail, тел.: -д.ф.-м.н., профессорБенинг Владимир Евгеньевич, bening @ yandex.ru, 4992647947

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы домашних заданий:

- 1. Определение разложения Эджворта.
- 2. Разложение Корниша-Фишера и его свойства.
- 3. Доказать теорему Эрроу.
- 4. Кроме того в качестве домашнего задания подразумевается изучение рекомендуемой литературы.

Вопросы для промежуточной аттестации – зачета (экзамена):

- 1. Оценки скорости сходимости в центральной предельной теореме.
- 2. Условие Крамера и его смысл.
- 3. Парадокс Аллэ и его разрешение.
- 4. Характеристическая функция и плотность многомерного нормального закона.
- 5. Независимость линейных и квадратичных форм от нормальных случайных величин.
- 6. Принципы выбора страховых взносов.

- 7. Эмпирическое определение функции полезности.
- 8. Выпуклость и вогнутость функции полезности.
- 9. Неравномерные оценки остаточного члена в асимптотических разложениях.
- 10. Асимптотическая аппроксимация оптимальной франшизы.

Методические материалы для проведения процедур оценивания результатов обучения

Зачет (экзамен) проходит по билетам, включающем 2 вопроса. Уровень знаний аспиранта по каждому вопросу на «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». В случае если на все вопросы был дан ответ, оцененный не ниже чем «удовлетворительно», аспирант получает общую оценку «зачтено».