Д.В. Чурбанов

ЧИСЛЕННЫЕ МЕТОДЫ ВОССТАНОВЛЕНИЯ ПАРАМЕТРОВ ДИПОЛЬНЫХ ИСТОЧНИКОВ И ПРИМЕРЫ НЕЕДИНСТВЕННОСТИ НАХОЖДЕНИЯ КООРДИНАТ ДИПОЛЕЙ

Постановка задачи

Пусть функция u(x,t) является решением задачи Неймана эллиптического уравнения в круговой области $D = \{(x, y): x^2 + y^2 = R^2\}$ с границей ∂D :

$$\Delta u(x,y) = -N_1 \frac{\partial \delta}{\partial n_1} (x - \xi_1, y - \eta_1) - N_2 \frac{\partial \delta}{\partial n_2} (x - \xi_2, y - \eta_2), \quad (1)$$

$$\frac{\partial u}{\partial n}(x,y) = 0, (x,y) \in \partial D, \tag{2}$$

где $\frac{\partial \delta(s,t)}{\partial n}$ – сингулярный функционал, действие которого на функцию определено по правилу $\iint_{-\infty}^{\infty} \frac{\partial \delta}{\partial n}(s,t)f(s,t)dsdt = -\frac{\partial f}{\partial n}(0,0)$. Здесь $\frac{\partial f}{\partial n}(x,y)$ представляет собой производную по направлению единичного вектора \bar{n} . Уравнения с правой частью (1) также исследовались в работах [1-3].

Прямая задача (1), (2) позволяет получить потенциал u(x,t) в области \overline{D} , определяемый наличием двух диполей, расположенных в точках $S_1(\xi_1,\eta_1), S_2(\xi_2,\eta_2)$ области D, ориентированных по векторам \overline{n}_1 и \overline{n}_2 с моментами N_1 и N_2 соответственно.

В рамках обратной задачи рассматривается вопрос об определении правой части уравнения Пуассона: дипольных моментов N_1 , N_2 , координат

$$S_1, S_2 \in D^{\varepsilon} = D \setminus \bigcup_{i=1}^9 \left(D_{(x_i, y_i)}^{\varepsilon} = \{ (x, y) : (x - x_i)^2 + (y - y_i)^2 = R^2 \} \right)$$

и ориентаций $\bar{n}_1 = (n_{1x}, n_{1y}), \quad \bar{n}_2 = (n_{2x}, n_{2y}), \quad (|\bar{n}_1|=1, |\bar{n}_2|=1)$ дипольных источников. В обратной задаче дополнительно заданы значения

$$u(x_i, y_i) = c_i, \quad i = 1, ..., 9,$$

решения задачи (1), (2) на границе области $(x_i, y_i) \in \partial D$. Постановки такого типа характерны для моделирования ЭЭГ в медицинской диагностике [4,5]. Обзор методов разрабатываемых для определения ЭЭГ представлен в работе [6].

Решение прямой и обратной задач

Решение внутренней задачи Неймана (1), (2) можно получить при помощи обобщенной функции Грина [7-9]. Формула для функции u(x,t) имеет вид:

$$u(x,y) = \frac{(x-\xi_1)l_{1x} + (y-\eta_1)l_{1y}}{\pi[(x-\xi_1)^2 + (y-\eta_1)^2]} + \frac{(x'-\xi_1)l_{1x} + (y'-\eta_1)l_{1y}}{\pi[(x-\xi_1)^2 + (y-\eta_1)^2]} + \frac{(x-\xi_2)l_{2x} + (y-\eta_2)l_{2y}}{\pi[(x-\xi_2)^2 + (y-\eta_2)^2]} + \frac{(x'-\xi_1)l_{1x} + (y'-\eta_1)l_{1y}}{\pi[(x-\xi_1)^2 + (y-\eta_1)^2]}, \quad (3)$$

где (x_i, y_i) – точка, лежащая на прямой, соединяющей начало координат и точку (x, y) на расстоянии $\frac{R^2}{\sqrt{x^2 + y^2}}$ от начала координат. Векторы $\bar{l}_i = (l_{ix}, l_{iy})$ и $\bar{n}_i = (n_{ix}, n_{iy})$ коллинеарны, причем $|\bar{l}_i| = N_i$, i = 1,2. При $(x, y) \in \partial D$ точка (x', y') совпадет с (x, y) и формула заметно упрощается.

Пусть определена функция

$$F(S_1, S_2, \bar{l}_1, \bar{l}_2; x_i, y_i) = = 2 \frac{(x_i - \xi_1)l_{1x} + (y_i - \eta_1)l_{1y}}{\pi[(x_i - \xi_1)^2 + (y_i - \eta_1)^2]} + 2 \frac{(x_i - \xi_2)l_{2x} + (y_i - \eta_2)l_{2y}}{\pi[(x_i - \xi_2)^2 + (y_i - \eta_2)^2]}.$$

Подставив в формулу (3) значения потенциала на границе $u(x_i, y_i) = c_i$, i = 1, ..., 9, можно написать систему из девяти уравнений с восемью неизвестными по определению параметров источников

$$F(S_1, S_2, \bar{l}_1 \ \bar{l}_2; x_i, y_i) = c_i, \qquad i = \overline{1,9},$$
(4)

где $l_{ix}, l_{iy}, \xi_i, \eta_i, i = 1, 2$ – искомые постоянные, c_i, x_i, y_i – известные постоянные, $i = \overline{1,9}$. Количество уравнений берется большим количества неизвестных, чтобы избавиться от неединственности, которая может возникнуть, когда число уравнений равно числу неизвестных. Примеры неединственности приведены в последней части работы.

Численное решение обратной задачи

Рассмотрим задачу минимизации функционала невязки

$$\Psi(\xi_1,\eta_1,\xi_2,\eta_2,\bar{l}_1,\bar{l}_2) = \sum_{i=1}^9 \left[F(\xi_1,\eta_1,\xi_2,\eta_2,\bar{l}_1,\bar{l}_2;x_i,y_i) - c_i\right]^2$$

в открытой области

$$(\xi_1, \eta_1), (\xi_2, \eta_2) \in D^{\varepsilon}, \bar{l}_1 \ \bar{l}_2 \in R^2.$$
(5)

Пусть $p = (p_1, p_2, p_3, p_4, p_5, p_6, p_7) = (\xi_1, \eta_1, \xi_2, \eta_2, l_{1x}, l_{1y}, l_{2x}, l_{2y})$. Для нахождения безусловного минимума функционала $\Psi(\bar{p})$ может быть использован рекуррентный алгоритм построения последовательности

$$p_k^{n+1} = p_k^n - \alpha \frac{\partial \Psi(\bar{p})}{\partial p_k},\tag{6}$$

где величина α_n выбирается из условия

$$\Psi(\bar{p}^n) - \Psi(\bar{p}^n - \alpha \Psi'(\bar{p}^n)) \ge \varepsilon \alpha_n ||\Psi'(\bar{p}^n)||, \qquad 0.5 < \varepsilon < 1.$$

Как показано в [10], для выпуклого гладкого функционала $\Psi(\bar{p})$ последовательность (6) является сходящейся, причем монотонно по значениям $\Psi(\bar{p}^n)$. Поскольку область восстановления координат диполей ограничена, то не исключено, что последовательность $\{\bar{p}^n\}$ может выйти по координатам p_1, p_2, p_3, p_4 , то есть по $(\xi_1, \eta_1), (\xi_2, \eta_2)$, за границы области D^{ε} . В таком случае берется проекция вектора \bar{p}^k , вышедшего за границы ∂D , на данное множество D^{ε} . В качестве начального приближения можно выбрать произвольную точку области (5). Итерационный процесс реализуется до тех пор, пока не будет достигнута желаемая точность, определяемая условием

$$\max_{1 \le i \le 9} |F(\bar{p}_n, x_i, y_i) - c_i| \le \delta,$$

где *б* – задаваемая для осуществления останова величина. Компоненты градиента функционала определяются согласно выражению

$$\frac{\partial \Psi(\bar{p})}{\partial p_k} = 2 \sum_{i=1}^{9} \frac{\partial F(\bar{p}; x_i, y_i)}{\partial p_k} [F(\bar{p}; x_i, y_i) - c_i],$$

где частные производные функции F $(\bar{p}; x_i, y_i)$ вычисляются по формулам для j = 1, 2, i = 1, ..., 9

$$\frac{\partial F(\bar{p})}{\partial \xi_{j}} = -2 \frac{\left(\left(x_{i} - \xi_{j}\right)^{2} - \left(y_{i} - \eta_{j}\right)^{2}\right)l_{jx} + 2(x_{i} - \xi_{j})(y_{i} - \eta_{j})l_{jy}}{\left[\left(x_{i} - \xi_{j}\right)^{2} + \left(y_{i} - \eta_{j}\right)^{2}\right]^{2}},\\ \frac{\partial F(\bar{p})}{\partial \eta_{j}} = -2 \frac{\left(\left(y_{i} - \eta_{j}\right)^{2} - \left(x_{i} - \xi_{j}\right)^{2}\right)l_{jy} + 2(x_{i} - \xi_{j})(y_{i} - \eta_{j})l_{jx}}{\left[\left(x_{i} - \xi_{j}\right)^{2} + \left(y_{i} - \eta_{j}\right)^{2}\right]^{2}},\\ \frac{\partial F(\bar{p})}{\partial l_{jx}} = -2 \frac{\left(x_{i} - \xi_{j}\right)}{\left(x_{i} - \xi_{j}\right)^{2} + \left(y_{i} - \eta_{j}\right)^{2}},\\ \frac{\partial F(\bar{p})}{\partial l_{jy}} = -2 \frac{\left(y_{i} - \eta_{j}\right)}{\left(x_{i} - \xi_{j}\right)^{2} + \left(y_{i} - \eta_{j}\right)^{2}}.$$

Вычислительные эксперименты

На иллюстрациях представлены результаты численных расчетов решения обратной задачи. Вначале задавалось некоторое положение (на рисунках отмечено парой букв F_1 и F_2) и некоторая ориентация диполей, по этим данным вычислялись значения c_i на приемниках, обозначенных крестиками X. Далее из некоторого начального положения, обозначенного парой букв S_1 и S_2 , организовывался итерационный процесс, описанный в предыдущем пункте. Некоторые итерации данного процесса отмечены стрелочками, причем наклон стрелочек соответствует наклону диполя на данной итерации. В таблицах показано соответствие номеров итераций и величин погрешности на данной итерации.

Рис. 1.

Номер на	Итерация	Невязка
рис.		
1	0	1.642
2	3	0.743
3	12	0.526
4	18	0.266
5	270	0.09

Таблица 1.

В эксперименте, проиллюстрированном на рисунке 1, как и в последующих экспериментах, диполи в начальном положении имеют наклон 45 градусов к горизонтали. На паре рисунков 1, 2 приемники распределены по всей границе области, в то время, как на рисунках 3, 4 они сконцентрированы преимущественно в верхней части.

Номер на	Итерация	Невязка
рис.		
1	3	2.569
2	4	2.587
3	5	2.592
4	15	2.134
5	391	0.019

Таблица 2.

Также выбирались различные начальные положения итерационного процесса, на рисунках 1, 3 начальные положения полагались в накрест лежащих секторах круга, когда на рисунках 2, 4 пара начальных положений диполей находятся в нижней части круга, а конечные положения диполей находятся в верхней части круга.

Рис. 3.

Номер на	Итерация	Невязка
рис.		
1	1	1.447
2	4	1.198
3	12	0.992
4	15	0.891
5	768	0.062

Таблица 3.

Рис. 4.

Номер на	Итерация	Невязка
рис.		
1	4	3.112
2	5	3.151
3	50	0.873
4	500	0.229
5	1497	0.099

Таблица 4.

Проведенные вычислительные эксперименты показали, что восстановление параметров диполей данным градиентным методом возможно при различных сочетаниях расположения приемников и диполей.

Неединственность определения координат диполей

Для уравнения (1) ставится обратная задача об определении только координат $(\xi_1, \eta_1), (\xi_2, \eta_2) \in D^{\varepsilon}$ дипольных источников при известных дипольный моментах N_1 и N_2 , ориентациях \bar{n}_1 , \bar{n}_2 по дополнительно заданным значениям $u(x_i, y_i) = c_i$, i = 1, ..., 4 решения задачи (1), (2) на границе области, $(x_i, y_i) \in \partial D$. Константы N_1 и N_2 , и c_i , i = 1, ..., 4, а также направления \bar{n}_1 и \bar{n}_2 заданы.

Задача об определении координат источников по потенциалам сводится к системе аналогичной (4), из четырех уравнений с четырьмя неизвестными $\xi_1, \eta_1, \xi_2, \eta_2$, где $l_{1x}, l_{1y}, l_{2x}, l_{2y}, c_i, x_i, y_i$, – искомые постоянные, c_i, x_i, y_i – заданные постоянные, i = 1, ..., 4.

Решение данной системы, как и прежде, сводится к задаче об отыскании минимума функционала

$$\Psi(\xi_1,\eta_1,\xi_2,\eta_2,\bar{l}_1,\bar{l}_2) = \sum_{i=1}^4 \left[F(\xi_1,\eta_1,\xi_2,\eta_2,\bar{l}_1,\bar{l}_2;x_i,y_i) - c_i\right]^2,$$

минимизация которого проводится градиентным методом описанным выше. Поскольку в случае, когда число уравнений совпадает с числом неизвестных предполагается неединственность, то для отыскания всех возможных решений градиентный метод применяется для различных пар начальных значений (ξ_{10} , η_{10}), (ξ_{20} , η_{20}) из множества точек {(x, y): (ih, jh) $\in D$, i, j = 1..n} (h = 0.5) при одних и тех же данных на приемниках c_i , i = 1,..,4.

В ходе вычислительного эксперимента бралась серия решений, причем один источник был фиксирован (обозначен цифрой II), а другой, обозначенный арабскими цифрами от 1 до 4, равномерно смещался в горизонтальном (рисунки 5 (а, б)), вертикальном (рисунки 5 (в, г)) и радиальном направлениях (рисунки 5 (д, е)). После вычислялись значения на приемниках с_i. Далее при помощи описанного выше алгоритма находились решения, дающие близкие с некоторой точностью значения на приемниках. При обнаружении второго решения, на иллюстрациях оно помечалось геометрическими фигурами и цифрой, соответствующей исходному решению. Например, паре (1, *II*) соответствует дополнительно обнаруженное решение, помеченное треугольниками и парой цифр (1,1'). Обнаружено, что в случае дипольных источников, в отличие от точечных зарядов [11], возможно наличие третьего решения. Примеры обнаружения третьего решения можно найти на рисунках 5 (а, в). В обоих случаях оно соответствует решению (1, II) и обозначено крестиками вместе с парой цифр (1", 1°).

г

Рис. 5.

Список литературы

- 1. El Badia A., Farah M. Identification of dipole sources in an elliptic equation from boundary measurements: application to the inverse eeg problem. J. Inverse Ill-Posed Probl. 2006, V 14, N 4, pp 331- 353.
- 2. Clerc M. et al Source localization using rational approximation on plane sections. Inverse Problems. 2012. V 28, N 5. pp 05501-8.
- 3. Clerc M., Kybic J. A common formalism for the integral formulations of the forward eeg problem. IEEE Trans. Medical Imaging. 2008. V 24. pp 12-28.
- 4. Гнездецкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. М.: МЕДпресс-информ. 2004.
- 5. Ливанов М.Н. Пространственная организация процессов головного мозга. М.: Наука. 1972.
- Cassar T., Grech R. Review of solving the inverse problem in eeg source analysis. Journal of Neuroengineering and Rehabilitation. 2008. V 5. N 25.
- 7. Соболев С.Л. Уравнения математической физики. М.: Наука. 1992.
- 8. В.Я. Арсенин Методы математической физики и специальный функции. М.: Наука. 1972.
- 9. Ю.М. Крикунов. Обобщенная функция Грина задачи Неймана и задачи ТЗ для уравнения Лаврентьева-Бицадзе. Тр. сем. по краев задачам Казанского гос. Ун-та. Казань. 1985.
- 10. Третьяков А.А., Березнев В.А., Карманов В.Г. О стабилизирующих свойствах градиентного метода. Ж. Вычисл. Матем. и Матем. Физ., 1986, Т. 26, №1, С. 134-137.
- 11. Чурбанов Д.В., Щеглов А.Ю. Пример неединственности восстановления правых частей эллиптического уравнения. Вестн. Моск. ун-та. Сер. 15. Вычисл. Матем. и киберн. 2012. № 1. С. 49-51.