А. М. Денисов, Е. В. Захаров, А. В. Калинин

ЧИСЛЕННОЕ РЕШЕНИЕ ЛОКАЛИЗОВАННОЙ ОБРАТНОЙ ЗАДАЧИ ЭЛЕКТРОКАРДИОГРАФИИ*

1. Введение

В традиционной постановке обратная задача электрокардиографии представляет собой задачу определения потенциала на внешней поверхности сердца по измерениям потенциала на поверхности грудной клетки (см., например, [1], [2]). Одним из наиболее важных применений методов решения этой обратной задачи является диагностика очагов аритмии сердца.

Рис. 1. Области торса и сердца.

В работе [3] были предложены алгоритмы решения обратной задачи электрокардиографии для модельной геометрии торса и сердца, в [4] рассматривалась реальная геометрия торса и сердца, но предполагалось, что грудная клетка однородна, в [5, 6, 7] рассмотрена обратная задача электрокардиографии с учетом внутренней неоднородности грудной клетки, а в [8] был предложен алгоритм определения проекции очага аритмии на внешнюю поверхность сердца. Следует отметить, что во всех указанных выше работах решалась обратная задача определения потенциала электрического поля и локализации очага армитмии только на внешней поверхности сердца.

Цель данной работы состоит в том, чтобы показать возможность локализации очага аритмии в результате определения потенциала не на внешней поверхности сердца, а на поверхности одной из выделенных

^{*}Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект\$14-01-00244

частей сердца, в которой предположительно находится источник аритмии.

2. Математическая постановка задачи и численный метод ее решения

Рассмотрим в трехмерном пространстве область Ω_H , ограниченную снаружи замкнутой поверхностью Γ_B , а изнутри замкнутой поверхностью Γ_H . Поверхность Γ_B представляет собой объединение двух поверхностей Γ_T и Γ_E . Интерпретация, введенных выше поверхностей, такова. Γ_H – это внешняя поверхность сердца, Γ_E – часть поверхности торса человека, на которой производятся измерения потенциала электрического поля сердца, Γ_T – объединение верхнего и нижнего срезов торса (см. рис. 1).

Рис. 2. Декомпозиции сердца на подобласти.

Электрическое поле сердца определяется источниками, находящимися в сердечной мышце. Будем предполагать, что источник только один. Введем три поверхности Γ_{LV} , Γ_{SP} и Γ_{RV} , ограничивающие три области сердца (см. рис. 2). Источник возбуждения электрического поля находится внутри одной из поверхностей Γ_{LV} , Γ_{SP} , Γ_{RV} . Обозначим через Ω_{LV} , Ω_{SP} и Ω_{RV} области, ограниченные снаружи поверхностью Γ_B , а изнутри поверхностями Γ_{LV} , Γ_{SP} и Γ_{RV} соответственно.

В каждой из областей Ω_{LV} , Ω_{SP} и Ω_{RV} рассмотрим следующую задачу. Требуется найти в области Ω с границами Γ_1 и Γ_2 функцию u(x)такую, что

$$\Delta u(x) = 0, \quad x \in \Omega, \tag{1}$$

$$u(x) = \varphi(x), \quad x \in \Gamma_1, \tag{2}$$

$$\frac{\partial u(x)}{\partial n} = 0, \quad x \in \Gamma_1, \tag{3}$$

где $\varphi(x)$ – известная функция, а Ω , Γ_1 и Γ_2 для каждой из задач выбирались следующим образом:

	Ω	Γ_1	Γ_2
задача 1	Ω_{LV}	Γ_E	$\Gamma_T \cup \Gamma_{LV}$
задача 2	Ω_{SP}	Γ_E	$\Gamma_T \cup \Gamma_{SP}$
задача З	Ω_{RV}	Γ_E	$\Gamma_T \cup \Gamma_{RV}$

Задача (1)–(3) представляет собой задачу Коши для уравнения Лапласа и является некорректно поставленной. Одним из наиболее существенных проявлений ее некорректности является неустойчивость потенциала u(x) в Ω по отношению к небольшим изменениям в исходных данных $\varphi(x)$. Исследованию единственности, условной устойчивости задачи Коши для уравнения Лапласа и разработке численных методов ее решения посвящено большое число работ (см., например, [9] – [13] и цитированную там литературу).

Решение задачи (1)–(3) в разных областях Ω_{LV} , Ω_{SP} , Ω_{LV} позволит проверить гипотезу об определении области, содержащей источник электрического поля сердца, на основе информации об электрическом поле на поверхности Γ_1 .

Задача Коши (1)–(3) может быть переформулирована как задача поиска значений функции u(x) на поверхности Γ_2 при условии, что u(x)удовлетворяет (1)–(3). Обозначим неизвестные значения u(x) на Γ_2 через v(x) и рассмотрим краевую задачу

$$\Delta u(x) = 0, \quad x \in \Omega, \tag{4}$$

$$u(x) = v(x), \quad x \in \Gamma_2, \tag{5}$$

$$\frac{\partial u(x)}{\partial n} = 0, \quad x \in \Gamma_1.$$
(6)

Краевая задача (4)–(6) определяет оператор A, отображающий значения потенциала v(x) на поверхности Γ_2 в его значения $\varphi(x)$ на поверхности Γ_1 . Рассматриваемая обратная задача представляет собой задачу решения операторного уравнения первого рода

$$Av = \varphi, \tag{7}$$

где v неизвестна, а φ задана.

Для построения дискретного аналога уравнения (7) воспользуемся методом граничных интегральных уравнений. Поверхность $\Gamma_1 \cup \Gamma_2$, приблизим полигональной поверхностью $\Sigma = \hat{\Gamma}_1 \cup \hat{\Gamma}_2$, состоящей из объединения N плоских треугольников, которые будем называть граничными элементами, $\Sigma = \zeta_1 \cup \zeta_2 \cup \ldots \cup \zeta_N$. Совокупность граничных элементов составляет гранично-элементную сетку. Узлами гранично-элементной сетки будем называть точки $x_i \in \Sigma$, i = 1, 2, ..., N, находящиеся в центре тяжести соответствующих граничных элементов ζ_i .

На поверхности Σ введем систему линейно независимых финитных базисных функций $\phi_j(x), x \in \Sigma, j = 1, 2, ..., N$, определенных следующим образом

$$\begin{cases} \phi_j(x) = 1, & x \in \zeta_j, \\ \phi_j(x) = 0, & x \notin \zeta_j. \end{cases}$$
(8)

Рассмотрим приближенное представление функций u(x) и $q(x) \equiv \frac{\partial u(x)}{\partial n}$ в виде разложения по системе базисных функций $\phi_j(x)$

$$\tilde{u}(x) = \sum_{j=1}^{N} \alpha_j \cdot \phi_j(x), \tag{9}$$

$$\tilde{q}(x) = \sum_{j=1}^{N} \beta_j \cdot \phi_j(x), \qquad (10)$$

где коэффициенты разложения α_j и β_j — значения функций $\tilde{u}(x)$ и $\tilde{q}(x)$ в узлах гранично-элементной сетки.

Для каждой узловой точки x_i можно записать дискретный аналог третьей формулы Грина

$$2\pi \tilde{u}(x_i) = \int_{\Sigma} \tilde{q}(y) \frac{1}{|x_i - y|} d\Sigma - \int_{\Sigma} \tilde{u}(y) \frac{\partial}{\partial n_y} \frac{1}{|x_i - y|} d\Sigma, \qquad (11)$$

где $i = 1, 2, \ldots, N, x_i \in \zeta_i, y \in \Sigma, |x_i - y|$ — расстояние между точками x_i и y. Подставляя (9) и (10) в (11), получим

$$2\pi\alpha_{i} = \int_{\Sigma} \left(\sum_{j=1}^{N} \beta_{j} \cdot \phi_{j}(y)\right) \frac{1}{|x_{i} - y|} d\Sigma - \int_{\Sigma} \left(\sum_{j=1}^{N} \alpha_{j} \cdot \phi_{j}(y)\right) \frac{\partial}{\partial n_{y}} \frac{1}{|x_{i} - y|} d\Sigma.$$
(12)

Поменяв порядок интегрирования и суммирования, имеем

$$2\pi\alpha_i = \sum_{j=1}^N \beta_j \int_{\Sigma} \phi_j(y) \frac{1}{|x_i - y|} d\Sigma - \sum_{j=1}^N \alpha_j \int_{\Sigma} \phi_j(y) \frac{\partial}{\partial n_y} \frac{1}{|x_i - y|} d\Sigma.$$
(13)

Учитывая (8), получим систему уравнений относительно α_j и β_j $(i = 1, 2, \ldots, N, j = 1, 2, \ldots, N)$

$$2\pi\alpha_i + \sum_{j=1}^N \alpha_j \int_{\zeta_j} \frac{\partial}{\partial n_y} \frac{1}{|x_i - y|} d\zeta_j = \sum_{j=1}^N \beta_j \int_{\zeta_j} \frac{1}{|x_i - y|} d\zeta_j.$$
(14)

Эту систему можно переписать в матричном виде

$$\mathbf{H}\mathbf{u} = \mathbf{G}\mathbf{q},\tag{15}$$

где матрицы H и G вычисляются следующим образом:

$$\mathbf{H} \equiv [h_{ij}] = \begin{cases} \int \frac{\partial}{\partial n_y} \frac{1}{|x_i - y|} d\zeta_j, & i \neq j, \\ \int \int \frac{\partial}{\partial n_y} \frac{1}{|x_i - y|} d\zeta_j + 2\pi, & i = j, \end{cases}$$
(16)

$$G \equiv [g_{ij}] = \int_{\zeta_j} \frac{1}{|x_i - y|} d\zeta_j, \qquad (17)$$

a $\mathbf{u} = [\alpha_1, \alpha_2, \dots, \alpha_N]^T$ if $\mathbf{q} = [\beta_1, \beta_2, \dots, \beta_N]^T$.

Перегруппировав элементы h_{ij}
и g_{ij} матриц H и G, систему (15) можно переписать в виде

$$\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \end{bmatrix}$$
(18)

ИЛИ

где матрицы H_{kl} и G_{kl} составлены из таких элементов h_{ij} и g_{ij} , что $x_i \in \hat{\Gamma}_k, \, \zeta_j \in \hat{\Gamma}_l$, где $k = 1, 2, \, l = 1, 2$; а векторы \mathbf{u}_l и \mathbf{q}_l составлены из таких значений α_j и β_j в узловых точках x_j , что $x_j \in \hat{\Gamma}_l$.

Векторы $\mathbf{u}_1, \mathbf{u}_2, \mathbf{q}_1, \mathbf{q}_2$ являются дискретными приближениями функции u(x) и ее нормальной производной $\frac{\partial u(x)}{\partial n}$ на поверхностях $\hat{\Gamma}_1$ и $\hat{\Gamma}_2$. С учетом условия (3) вектор $\mathbf{q}_1 = 0$ и система принимает вид

Разрешив (20) относительно \mathbf{u}_2 , получим систему линейных алгебраических уравнений

$$\hat{\mathbf{A}}\mathbf{u}_2 = \mathbf{u}_1 \tag{21}$$

и выражение, связывающие дискретные приближения функции и ее нормальной производной

$$\mathbf{q}_2 = \hat{\mathbf{R}} \mathbf{u}_2, \tag{22}$$

где

$$\hat{A} = \left(H_{11} - G_{12}G_{22}^{-1}H_{21}\right)^{-1} \left(G_{12}G_{22}^{-1}H_{22} - H_{12}\right), \qquad (23)$$

$$\hat{\mathbf{R}} = \left(\mathbf{G}_{22} - \mathbf{H}_{21}\mathbf{H}_{11}^{-1}\mathbf{G}_{12}\right)^{-1} \left(\mathbf{H}_{22} - \mathbf{H}_{21}\mathbf{H}_{11}^{-1}\mathbf{H}_{12}\right).$$
(24)

Система (21) является дискретным аналогом операторного уравнения (7). Ее решение будет искать при помощи метода регуляризации Тихонова [14].

Пусть для точных значений вектора $\bar{\mathbf{u}}_1$ существует точное решение уравнения (21) $\bar{\mathbf{u}}_2$, но $\bar{\mathbf{u}}_1$ неизвестен, а задано его приближение $\mathbf{u}_{1_{\delta}}$ и величина погрешности δ такие что, $\|\mathbf{u}_{1_{\delta}} - \bar{\mathbf{u}}_1\| \leq \delta$. Требуется, зная $\mathbf{u}_{1_{\delta}}$ и величину погрешности δ построить приближенное решение $\mathbf{u}_{2_{\delta}}$.

Рассмотрим функционал

$$M^{\lambda}[\mathbf{u}_{2}] = \|\hat{\mathbf{A}}\mathbf{u}_{2} - \mathbf{u}_{1_{\delta}}\|^{2} + \lambda \|\hat{\mathbf{R}}\mathbf{u}_{2}\|^{2}, \qquad (25)$$

где λ — положительный параметр. Приближенное решение $\mathbf{u}_{2_{\delta}}$ определяется как элемент, реализующий минимум функционала $M^{\lambda}[\mathbf{u}_2]$, в котором параметр регуляризации λ должным образом зависит от величины погрешности δ , т.е. $\lambda = \lambda(\delta)$ и может быть найден из принципа невязки

$$\|\hat{\mathbf{A}}\mathbf{u}_{2\delta} - \mathbf{u}_{1\delta}\|^2 = \delta \tag{26}$$

Из необходимого условия минимума регуляризирующего функционала (25) следует, что приближенное решение $\mathbf{u}_{2\delta}$ является решением операторного уравнения

$$(\hat{A}^T \hat{A} + \lambda \hat{R}^T \hat{R}) \mathbf{u}_{2_{\delta}} = \hat{A}^T \mathbf{u}_{1_{\delta}}.$$
(27)

3. Результаты численных экспериментов

Рассмотрим результаты численных экспериментов для реальной геометрии торса и сердца. Поверхность торса Γ_B и внешняя поверхность сердца Γ_H были реконструированы по данным компьютерной томографии. Число граничных элементов на поверхности Γ_B составило 2784, на поверхности $\Gamma_H - 3082$. Далее поверхность сердца разбивалась на три части, соответствующие анатомическим частям сердца:

- Γ_{LV} представляла собой поверхность левого желудочка (Left Ventricle), число граничных элементов составило 3120;
- Г_{SP} представляла собой поверхность межжелудочковой перегородки (Septum), число граничных элементов составило 3056;
- Γ_{RV} представлял собой поверхность правого желудочка (Right Ventricle), число граничных элементов составило 3014.

С использование программного обеспечения Oxford Cardiac Chaste [15] выполнялась процедура т.н. *виртуального пейсинга* из левого и правого желудочков, заключающаяся в численном моделировании электрического поля сердца, создаваемого в результате электрической стимуляции участка миокарда в левом и правом желудочках. В результате численного моделирования реконструировались значения потенциала электрического поля сердца на поверхности торса. В эти данные вносилась погрешность $\delta = 3\%$.

Далее с этими данными при помощи изложенного выше алгоритма решались задачи для каждой из поверхностей Γ_{LV} , Γ_{SP} , Γ_{RV} и анализировались невязки решения на поверхности торса. Значения невязок составили:

	Источник в Ω_{LV}	Источник в Ω_{RV}
Решение для Γ_{LV} (часть 1)	$7.03 \cdot 10^{-2}$	$3.45 \cdot 10^{-1}$
Решение для Γ_{SP} (часть 2)	$1.21\cdot 10^{-1}$	$1.83 \cdot 10^{-1}$
Решение для Γ_{RV} (часть 3)	$2.46 \cdot 10^{-1}$	$5.69\cdot10^{-2}$

Для источника в области Ω_{LV} минимальная невязка соответствовала решению для Γ_{LV} , а для источника в области Ω_{RV} минимальная невязка соответствовала решению для Γ_{RV} . Таким образом, изложенный в работе численный алгоритм позволяет при достаточно хорошей точности измерений достоверно определить поверхность одной из выделенных частей сердца, содержащую источник электрического поля.

Список литературы

- [1] Барр Р., Спэк М. Решения обратной задачи, выраженные непосредственно в форме потенциала. М.: Медицина, 1979.
- [2] Sundnes J., Lines G. T., Cai X., Nielsen B. F., Mardal K.-A., Tveito A. Computing the Electrical Activity in the Heart. Springer Berlin Heidelberg, 2006.
- [3] Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Применение метода регуляризации Тихонова для численного решения обратной задачи электрокардиографии. Вестн. МГУ. Сер. 15. Вычисл. матем. и кибернетика. 2008. N. 2. С. 5–10.

- [4] Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Численные методы решения некоторых обратных задач электрофизиологии сердца. Дифференц. ур-ния. 2009. Т. 45. N. 7. С. 1014–1022.
- [5] Захаров Е.В., Калинин А.В. Численное решение трехмерной задачи Дирихле в кусочно-однородной среде методом граничных интегральных уравнений. Ж. вычисл. матем. и матем. физ. 2009. Т. 49. N 7. C. 1197–1206.
- [6] Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Численное решение обратной задачи электрокардиографии для среды с кусочно-постоянным коэффициентом электропроводности. Журнал вычислительной математики и математической физики. 2010. N 7. C. 1233-1239.
- [7] Калинин А.В. Итерационный алгоритм решения обратной задачи электрокардиографии для среды с кусочно постоянным коэффициентом электропроводности. Прикладная математика и информатика. Из-во МГУ. 2010. N 34. C. 35-40.
- [8] Денисов А.М., Захаров Е.В. Калинин, А.В. Метод определения проекции точечного очага аритмии на поверхность сердца на основе решения обратной задачи электрокардиографии. Математическое Моделирование. 2012. 24(4), 22–30.
- [9] Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука. 1980.
- [10] Ландис Е.М. Некоторые вопросы качественной теории эллиптических и параболических уравнений. Успехи математических наук. 1959. 14(1), 21-85
- [11] Латтес Р., Лионс Ж.-Л. Метод квазиобращения и его приложения. М.: Мир. 1970
- [12] Козлов В.А., Мазья В.Г., Фомин А.В. Об одном итерационном методе решения задачи Коши для эллиптических уравнений. Журнал вычислительной математики и математической физики. 1991. 31(1), 64-74
- [13] Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М.:Едиториал УРСС. 2004.
- [14] Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука. 1986
- [15] Mirams G.R, Arthurs C.J., Bernabeu M.O., Bordas R. и др. Chaste: An open source C++ library for computational physiology and biology. PLoS Comput. Biol. 9(3):e1002970, 2013