МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова»

«Утверждаю»

Декан факультета ВМК МГУ имени М.В. Ломоносова

академик

Е.И. Моисеев

2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Дифференциальные уравнения и математическое моделирование»

Уровень высшего образования – подготовка научно-педагогических кадров в аспирантуре

Направление подготовки – 02.06.01 «компьютерные и информационные науки»,

09.06.01 «информатика и вычислительная техника»

Направленность (профиль) – «Математическое моделирование, численные методы, комплексы программ» (05.13.18)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

1. НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ

Дифференциальные уравнения и математическое моделирование

2. УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ

Подготовка научно-педагогических кадров в аспирантуре.

3. НАПРАВЛЕНИЕ ПОДГОТОВКИ, НАПРАВЛЕННОСТЬ (ПРОФИЛЬ) ПОДГОТОВКИ

Направление 09.06.01 «информатика и вычислительная техника», Направленность (профиль) «Математическое моделирование, численные методы, комплексы программ» (05.13.18)

4. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина относится к специальным дисциплинам вариативной части образовательной программы и является обязательной для освоения.

5. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ

Дисциплина участвует в формировании следующих компетенций образовательной программы:

Формируемые компетенции	Планируемые результаты обучения
Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1)	У2 (УК-1) УМЕТЬ: при решении исследовательских и практических задач генерировать новые идеи, поддающиеся операционализации исходя из наличных ресурсов и ограничений
	В2(УК-1) ВЛАДЕТЬ: навыками критического анализа и оценки современных научных достижений и результатов деятельности по решению исследовательских и практических задач, в том числе в междисциплинарных областях

Владением методологией теоретических и экспериментальных исследований	31 (ОПК-1) ЗНАТЬ:
в области профессиональной деятельности	современные математические методы, применяющиеся для решения
(0	задач в области естественных наук, экономики, социологии и ин-
(ОПК-1)	формационно-коммуникационных технологий
	У1 (ОПК-1) УМЕТЬ:
	применять современные методы постановки и анализа задач в области ма-
	тематики и информатики
	В1 (ОПК-1) ВЛАДЕТЬ:
	навыками оптимального выбора современных методов и средств поста-
	новки и анализа задач в области математики и информатики
	31 (ПК-1) ЗНАТЬ:
D на начина даржамачин мин мата нами поатжа амия и ама низа матаматина	Современные методы построения и анализа математических моде-
Владение современными методами построения и анализа математических моделей, возникающих при решении естественнонаучных задач,	лей, возникающих при решении естественнонаучных задач и осно-
а также методами разработки и реализации алгоритмов их решения на	ванных на дифференциальных уравнениях.
а также методами разраоотки и реализации алгоритмов их решения на основе фундаментальных знаний в области математики и информати-	ванных на дифференциальных уравнениях.
	У1 (ПК-1) УМЕТЬ:
KN (THC 1)	Применять современные методы построения и анализа математиче-
(ПK-1)	ских моделей, возникающих при решении естественнонаучных за-
	дач и основанных на дифференциальных уравнениях.
	дач и основанных на дифференциальных уравнениях.
	В1 (ПК-1) ВЛАДЕТЬ:
	навыками выбора современных методов построения и анализа математи-
	ческих моделей, возникающих при решении естественнонаучных задач и
	основанных на дифференциальных уравнениях.
Способность к реализации различных математических алгоритмов в	31 (ПК-4) ЗНАТЬ:
виде программных комплексов, ориентированных на современную	современные методы реализации различных математических алгоритмов в
вычислительную технику	виде программных комплексов, особенности современных
(ПK-4)	вычислительных комплексов
	У1(ПК-4) УМЕТЬ:
	применять современные методы реализации различных математических
	алгоритмов в виде программных комплексов с учетом особенностей со-
	временных вычислительных комплексов

	В1 (ПК-4) ВЛАДЕТЬ: навыками оптимального выбора и создания новых современных методов реализации математических алгоритмов в виде программных комплексов, учитывающих особенности современных вычислительных комплексов
--	--

Оценочные средства для промежуточной аттестации приведены в Приложении.

6. ОБЪЕМ ДИСЦИПЛИНЫ

Объем дисциплины составляет 3 зачетных единицы, всего 108 часов.

36 часов составляет контактная работа с преподавателем – 32 часа занятий лекционного типа, 0 часов занятий семинарского типа (семинары, научно-практические занятия, лабораторные работы и т.п.), 0 часов индивидуальных консультаций, 2 часа мероприятий текущего контроля успеваемости, 2 часа групповых консультаций, 3 часа мероприятий промежуточной аттестации.

72 часа составляет самостоятельная работа аспиранта.

7. ВХОДНЫЕ ТРЕБОВАНИЯ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Учащиеся должны владеть знаниями по математическому анализу, линейной алгебре, дифференциальным уравнениям, численным методам в объеме, соответствующем основным образовательным программам бакалавриата и магистратуры по укрупненным группам направлений и специальностей 01.00.00 «Математика и механика», 02.00.00 «Компьютерные и информационные науки».

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе обучения используется программное обеспечение для подготовки слайдов лекций MS PowerPoint

9. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

В курсе рассматриваются математические модели, основанные на дифференциальных уравнениях различного типа, формулируются основные математические задачи для этих уравнений, описываются основные свойства решений рассматриваемых задач и некоторые методы их решения.

Наименование и крат-	Всего					В том ч	исле			
кое содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	(часы)	Контак телем),	стная рабо часы	та (раб	бота во из 1	Самостоятельная работа обучаю- щегося, часы из них				
		Занятия лекционного типа	Занятия семинарско-го типа	Групповые консуль- тации	Индивидуальные консультации	Учебные занятия, направленные на проведение теку- щего контроля ус- певаемости (кол- локвиумы, прак- тические кон- трольные занятия и др)*	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п	Всего
Tema 1. Роль дифференциальных уравнений и математического моделирования в научном методе приобретения знаний.	4	2	-	-	-	-	2	2	-	2
Задачи математического моделирования. Основные виды дифференциальных уравнений. Обыкновенные дифференциальные уравнения. Дифференциальноалгебраические уравнения. Дифференциальные уравнения с запаздывающим аргументом. Ин-										

тегро-дифференциальные уравнения. Примеры математических моделей в физике, химии, биологии, экологии.										
Tema 2. Задача Коши для обыкновенных дифференциальных уравнений и свойства ее решений.	12	6	-	-	-	-	6	6	-	6
Задачи Коши для дифференциальных уравнений. Стандартная постановка для нормальной системы уравнений. Носитель решения. Векторное поле. Состояние моделируемой системы. Фазовое пространство и расширенное фазовое пространство. Фазовый поток. Представления решения задачи. Автономная система. Параметрическая система. Постановка задачи для матрицы-функции. Матрица Якоби фазового потока. Уравнение в вариациях. Постановка задачи для уравнений второго порядка. Редукция задачи для уравнений высокого порядка.										
Теорема о существовании решения задачи Коши. Теорема о единственности решения. Решение, существующие в целом. Естественная параметризация решения. Теорема о дифференцируемости решения. Первые интегралы. Полная система первых интегралов. Инвариантность линейной и квадратич-										

ной форм. Сохранение скалярного произведения, определителя матрицы, ортогональности ее столбцов и собственных чисел. Симплектичность. Теорема Пуанкаре о симплектичности фазового потока. Примеры симплектических систем. Изменение фазового объема. Теорема Лиувилля. Консервативные и диссипативные системы. Задача Коши для систем линейных уравнений с постоянными коэффициентами.										
Тема 3. Краевые задачи для обыкновенных дифференциальных уравнений. Сведение к задаче Коши. Краевые задачи для систем обыкновенных дифференциальных уравнений. Формулировка многоточечной краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Теорема о вычислительной устойчивости решения краевой задачи. Постановка и решение задачи о переносе граничных условий. Дифференциальная прогонка. Задача Штурма-Лиувилля.	9	4	-	-	-	1	5	4	-	4
Tema 4. Консервативные системы и жесткие задачи.	18	6	-	-	-	-	6	6	6	12

	<u> </u>	1		T		
Гамильтоновы системы. Задача о						
движении множества взаимодей-						
ствующих материальных точек.						
Потенциалы взаимодействия ма-						
териальных точек. Законы сохра-						
нения полного количества движе-						
ния, полного момента количества						
движения, полной энергии, фазо-						
вого объема. Обратимость реше-						
ния задачи Коши для гамильтоно-						
вых систем во времени. Симплек-						
тичность решения задачи о дви-						
жении множества взаимодейст-						
вующих материальных точек.						
Редукция задачи о движении двух						
материальных точек в задаче о						
движении материальной точки в						
центральном поле. Финитные и						
инфинитные движения, замкнутые						
и незамкнутые траектории движе-						
ния в центральном поле. Задача						
Кеплера. Дополнительные законы						
сохранения в задаче Кеплера.						
Точная линеаризация задачи и						
параметрическое представление						
решения в виде комбинации эле-						
ментарных функций. Задача трех						
тел. Частные решения Эйлера и						
Лагранжа. Хореографические						
движения.						
Жесткие задачи Коши. Примеры						
жестких задач химической кине-						
тики. Линейные жесткие задачи.						
Сингулярно-возмущенные задачи.						
Жесткие линейные краевые зада-						
1						

чи. Пограничные слои. Жесткие задачи Коши. Примеры жестких задач химической кинетики. Линейные жесткие задачи. Сингулярно-возмущенные задачи. Жесткие линейные краевые задачи. Пограничные слои.										
Tema 5. Методы качественного анализа решений задачи Коши	8	4	-	-	-	-	4	4	-	4
Задачи качественного анализа решений задачи Коши. Фазовый портрет. Особые точки векторного поля. Линеаризованная система уравнений. Матрица Якоби в особой точке. Невырожденная особая точка. Устойчивость особых точек. Теорема Ляпунова об устойчивости по первому приближению. Функция Ляпунова. Достаточные условия устойчивости. Сепарактрисы особых точек. Гомоклинические и гетероклинические траектории. Сепаратрисный контур.										
Периодические решения. Предельные циклы. Орбитальная устойчивость. Теорема Флоке. Матрица монодромии. Показатели Флоке Теорема об устойчивости периодического решения. Отображение Пуанкаре. Последовательность преобразований Пуанкаре. Инвариантный тор. Устой-										

чивость инвариантного тора. Квазипериодические решения. Преобразование Пуанкаре на инвариантном торе. Устойчивость решений задачи Коши. Показатели Ляпунова. Понятие аттрактора. Эргодическое движение. Странные аттракторы.								
6. Задачи для уравнений в ча- стных производных	19	10		1	13	8	-	8
Задачи для гиперболических уравнений. Метод характеристик. Телеграфное и волновое уравнения. Формула Даламбера. Уравнения газовой динамики и акустики. Градиентная катастрофа. Сильные разрывы. Эволюционность сильного разрыва. Волны разрежения. Задача о распаде произвольного разрыва.								
Задачи для параболических уравнений. Уравнения теплопроводности и диффузии с источником. Неустойчивость Тьюринга. Уравнения диффузии и химических реакций. Явления пространственно-временной самоорганизации. Автоволновые структуры.								
Задачи для уравнения Шредингера. Задача о свободном движении микрочастицы и ее решение. Задача о взаимодействии микрочастицы с потенциальным барьером.								

Задача о состояниях водородоподобного атома.								
Устный экзамен	36				36			
Итого	108		3	72				

10. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЩИХСЯ

Самостоятельная работа учащихся состоит в изучении лекционного материала, учебно-методической литературы, подготовки к текущему контролю и промежуточной аттестации.

Литература для самостоятельной работы студентов в соответствии с тематическим планом.

Tema 1 «Роль дифференциальных уравнений и математического моделирования в научном методе приобретения знаний. Основные виды дифференциальных уравнений. Примеры математических моделей»

- А. Н. Тихонов, Д. П. Костомаров. Рассказы о прикладной математике. М.: Наука, 1979, 207 с.
- А. А. Самарский. Вычислительный эксперимент. Вестник АН СССР, 1979, 5, 38
- А. Н. Тихонов, А. А. Самарский. Уравнения математической физики М.: Наука, 1966, 724 с.

Тема 2 «Задача Коши для обыкновенных дифференциальных уравнений и свойства ее решений»

- В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1971, 239 с.
- И. Г. Петровский. Лекции по теории обыкновенных дифференциальных уравнений. М.: Наука, 1970, 279 с.
- М. В. Федорюк. Обыкновенные дифференциальные уравнения М.: Наука, 1980, 350 с.
- Л. Э. Эльсгольц. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969, 424 с.
- E. Harier, C. Lubich, G. Wanner. Geometric Numerical Integration. Springer-Verlag, Berlin Heidelberg New York, 2002, 515 p.

Tema 3 «Краевые задачи для обыкновенных дифференциальных уравнений. Сведение к задаче Коши»

С. К. Годунов. Обыкновенные дифференциальные уравнения с постоянными коэффициентами. Краевые задачи. Новосибирск: Изд-во НГУ, 1994, 264 с.

- Р. П. Федоренко. Введение в вычислительную физику. М.: Изд-во МФТИ, 1994, 526 с.
- А. А. Абрамов. О переносе граничных условий для систем линейных обыкновенных дифференциальных уравнений. ЖВМиМФ, 1961, т. 1, 542-545.

Тема 4 «Консервативные системы и жесткие задачи»

- В. И. Арнольд. Геометрические методы в теории обыкновенных дифференциальных уравнений. Ижевск: Ижевская респ. Типография, 2000, 400 с.
- E. Harier, C. Lubich, G. Wanner. Geometric Numerical Integration. Springer-Verlag, Berlin Heidelberg New York, 2002, 515 p.
- Л. Д.Ландау, Е. М. Лифшиц. Механика. 1973, 207 с.
- Р. П. Федоренко. Введение в вычислительную физику. М.: Изд-во МФТИ, 1994, 526 с.
- Ю. В. Ракитский, С. М. Устинов, И. Г. Черноруцкий. Численные методы решения жестких систем. М.: Наука, 1979, 208 с.

Тема 5 «Методы качественного анализа решений задачи Коши»

- А. А. Андронов, Е. А. Леонтович, И. И. Гордон, А. Г. Майер. Теория бифуркаций динамических ситем на плоскости. М.: Наука, 1967, 487 с.
- Н. Н. Баутин. Поведение динамических систем вблизи границ области устойчивости. М.: Наука, 1984, 176 с.
- В. В. Немыцкий, В. В. Степанов. Качественная теория дифференциальных уравнений. М.: Едиториал УРСС, 2004, 552 с.
- Б. Ф. Былов, Р. Э. Виноград, Д. М. Гробман, В. В. Немыцкий. Теория показателей Ляпунова. М.: Наука, 1966, 576 с.
- И. Г. Малкин. Теория устойчивости движения. М.: Наука, 1966, 530 с.
- Г. Шустер. Детерминированный хаос. М.: Мир, 1988 240 с.
- Н. А. Магницкий. Хаотическая динамика нелинейных диссипативных систем обыкновенных дифференциальных уравнений. М.: МАКС Пресс, 2006, 156 с.

Тема 6 «Задачи для уранений в частных производных»

- А. Н. Тихонов, А. А. Самарский. Уравнения математической физики М.: Наука, 1966, 724 с.
- Б. Л. Рождественский, Н. Н. Яненко. Системы квазилинейных уравнений. М.: Наука, 1978, 687 с.
- И. М. Гельфанд. Некоторые задачи теории квазилинейных уравнений. Успехи математических наук, 1959, т. 14, в. 2(86), 87-158
- В. А. Фок. Начала квантовой механики. М.: Изд-во ЛКИ, 2008, 376 с.

В. А. Васильев, Ю. М. Романовский, В. Г. Яхно. Автоволновые процессы в распределенных кинетических системах. УФН, т. 128, в. 4., 626.

11. РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Основная литература

- 1. И. Г. Петровский. Лекции по теории обыкновенных дифференциальных уравнений. М.: Наука, 1970, 279 с.
- 2. М. В. Федорюк. Обыкновенные дифференциальные уравнения М.: Наука, 1980, 350 с.
- 3. Л. Э. Эльсгольц. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969, 424 с.
- 4. E. Harier, C. Lubich, G. Wanner. Geometric Numerical Integration. Springer-Verlag, Berlin Heidelberg New York, 2002, 515 p.
- 5. Р. П. Федоренко. Введение в вычислительную физику. М.: Изд-во МФТИ, 1994, 526 с.
- 6. А. А. Абрамов. О переносе граничных условий для систем линейных обыкновенных дифференциальных уравнений. ЖВМиМФ, 1961, т. 1, 542-545.
- 7. Л. Д. Ландау, Е. М. Лифшиц. Механика. 1973, 207 с.
- 8. В. В. Немыцкий, В. В. Степанов. Качественная теория дифференциальных уравнений. М.: Едиториал УРСС, 2004, 552 с.
- 9. А. Н. Тихонов, А. А. Самарский. Уравнения математической физики М.: Наука, 1966, 724 с.
- 10. Б. Л. Рождественский, Н. Н. Яненко. Системы квазилинейных уравнений. М.: Наука, 1978, 687 с.
- 11. В. А. Фок. Начала квантовой механики. М.: Изд-во ЛКИ, 2008, 376 с.
- 12. Л. Д. Ландау, Е. М. Лифшиц. Механика. 1973, 207 с.

Дополнительная литература

- 1. 1 А. А. Самарский. Вычислительный эксперимент. Вестник АН СССР, 1979, 5, 38
- 2. 1 А. Н. Тихонов, Д. П. Костомаров. Рассказы о прикладной математике. М.: Наука, 1979, 207 с.
- 3. 1 С. К. Годунов. Обыкновенные дифференциальные уравнения с постоянными коэффициентами. Краевые задачи. Новосибирск: Изд-во НГУ, 1994, 264 с.
- 4. 1 А. И. Егоров. Обыкновенные дифференциальные уравнения с приложениями. М.: Физматлит, 2005, 384 с.
- 5. 1 В. И. Арнольд. Геометрические методы в теории обыкновенных дифференциальных уравнений. Ижевск: Ижевская респ. типография, 2000, 400 с.
- 6. В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1971, 239 с.
- 7. ⁷ Ю. В. Ракитский, С. М. Устинов, И. Г. Черноруцкий. Численные методы решения жестких систем. М.: Наука, 1979, 208 с.
- 8. З А. А. Андронов, Е. А. Леонтович, И. И. Гордон, А. Г. Майер. Теория бифуркаций динамических ситем на плоскости. М.: Наука, 1967, 487 с.
- 9. 4 Н. Н. Баутин. Поведение динамических систем вблизи границ области устойчивости. М.: Наука, 1984, 176 с.
- 10. : Б. Ф. Былов, Р. Э. Виноград, Д. М. Гробман, В. В. Немыцкий. Теория показателей Ляпунова. М. : Наука, 1966, 576 с.
- 11. И. Г. Малкин. Теория устойчивости движения. М.: Наука, 1966, 530 с.
- 12. Г. Шустер. Детерминированный хаос. М.: Мир, 1988 240 с.
- 13. Н. А. Магницкий. Хаотическая динамика нелинейных диссипативных систем обыкновенных дифференциальных уравнений. М.: МАКС Пресс, 2006, 156 с.
- 14. И. М. Гельфанд. Некоторые задачи теории квазилинейных уравнений. Успехи математических наук, 1959, т. 14, в. 2(86), 87-158
- 15. В. А. Васильев, Ю. М. Романовский, В. Г. Яхно. Автоволновые процессы в распределенных кинетических

системах. УФН, т. 128, в. 4., 626.

16. Ф. Хартман. Обыкновенные дифференциальные уравнения. М.: Мир, 1970, 720 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»

- 17. http://elibrary.ru
- 18. www.scopus.com

Информационные технологии, используемые в процессе обучения

- 1. Программное обеспечение для подготовки слайдов лекций MS PowerPoint
- 2. Программное обеспечение для создания и просмотра pdf-документов Adobe Reader
- 3. Издательская система LaTeX.

Активные и интерактивные формы проведения занятия

№	Тип занятия или	Вид и тематика (название)
п\п	внеаудиторной работы	интерактивного занятия
1	Лекция 15	Тема «Автоволновые структуры»

Материально-техническая база

Для преподавания дисциплины требуется класс, оборудованный маркерной или меловой доской и проектором.

12. ЯЗЫК ПРЕПОДАВАНИЯ

Русский

13. РАЗРАБОТЧИК ПРОГРАММЫ, ЛЕКТОР

Профессор, д.ф.-м.н. Еленин Георгий Георгиевич

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

«Дифференциальные уравнения и математическое моделирование»

Средства для оценивания планируемых результатов обучения, критерии и показатели оценивания приведены ниже.

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине		КРИТЕРИИ и ПОКАЗАТЕЛИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю) (критерии и показатели берутся из соответствующих карт компетенций, при этом пользуются бо традиционной системой оценивания, либо БРС)										
(модулю)	1											
	1	2	3	4	5							
	Неудовлетворительно	Неудовлетвори-	Удовлетвори-	Хорошо	Отлично							
		тельно	тельно									
УМЕТЬ:	Отсутствие умений	Частично освоенное	В целом успешно,	В целом успешно,	Сформированное	доклады на науч-						
анализировать аль-		умение анализиро-	но не системати-	но содержащие	умение анализиро-	ных семинарах						
тернативные вариан-		вать альтернативные	чески осуществ-	отдельные пробе-	вать альтернативные							
ты решения исследо-		варианты решения	ляемые анализ	лы анализ альтер-	варианты решения							
вательских и практи-		исследовательских и	альтернативных	нативных вариан-	исследовательских и							
ческих задач и оце-		практических задач и	вариантов реше-	тов решения ис-	практических задач и							
нивать потенциаль-		оценивать потенци-	ния исследова-	следовательских	оценивать потенци-							
ные выигры-		альные выигры-	тельских и прак-	задач и оценка	альные выигры-							
ши/проигрыши реа-		ши/проигрыши реа-	тических задач и	потенциальных	ши/проигрыши реа-							
лизации этих вариан-		лизации этих вариан-	оценка потенци-	выигры-	лизации этих вариан-							
тов		тов	альных выигры-	шей/проигрышей	тов							
У1 (УК-1)			шей/проигрышей	реализации этих								
			реализации этих	вариантов								
			вариантов									
ВЛАДЕТЬ:	Отсутствие навыков	Фрагментарное при-	В целом успеш-	В целом успеш-	Успешное и система-	доклады на науч-						
навыками анализа		менение навыков	ное, но не систе-	ное, но содержа-	тическое применение	ных семинарах						
методологических		анализа методологи-	матическое при-	щее отдельные	навыков анализа ме-							

проблем, возникающих при решении исследовательских и практических задач, в том числе в междисциплинарных областях В1 (УК-1)		ческих проблем, возникающих при решении исследовательских и практических задач	менение навыков анализа методо- логических про- блем, возникаю- щих при решении исследователь- ских и практиче- ских задач	пробелы применение навыков анализа методологических проблем, возникающих при решении исследовательских и практических задач	тодологических проблем, возникающих при решении исследовательских и практических задач, в том числе в междисциплинарных областях	
ЗНАТЬ: современные математические методы, применяющиеся для решения задач в области естественных наук, экономики, социологии и информационнокоммуникационных технологий Код 31 (ОПК-1)	Отсутствие знаний	Фрагментарные представления о современных математических методах, применяющихся для решения задач в области естественных наук, экономики, социологии и информационнокоммуникационных технологий	В целом сформированные, но неполные знания о современных математических методах, применяющихся для решения задач в области естественных наук, экономики, социологии и информационнокоммуникационных технологий	Сформированные, но содержащие отдельные пробелы знания о современных математических методах, применяющихся для решения задач в области естественных наук, экономики, социологии и информационнокоммуникационных технологий	Сформированные систематические знания о современных математических методах, применяющихся для решения задач в области естественных наук, экономики, социологии и информационнокоммуникационных технологий	Устный экзамен
УМЕТЬ: применять современные методы постановки и анализа задач в области математики и информатики Код У1 (ОПК-1)	Отсутствие умений	Фрагментарные умения применять современные методы постановки и анализа задач в области математики и информатики	В целом успешное, но не систематическое умение применять современные методы постановки и анализа задач в области математики и информатики	Успешное, но содержащее отдельные пробелы умение применять современные методы постановки и анализа задач в области математики и информатики	Сформированное умение применять современные методы постановки и анализа задач в области математики и информатики	Устный экзамен

ВЛАДЕТЬ: навыками оптимального выбора современных методов и средств постановки и анализа задач в области математики и информатики Код В1 (ОПК-1)	Отсутствие навыков	Фрагментарное владение навыками оптимального выбора современных методов и средств постановки и анализа задач в области математики и информатики	В целом успешное, но не полное владение навыками оптимального выбора современных методов и средств постановки и анализа задач в области математики и информатики	Успешное, но содержащее отдельные пробелы владение навыками оптимального выбора современных методов и средств постановки и анализа задач в области математики и информатики	Сформированное владение навыками оптимального выбора современных методов и средств постановки и анализа задач в области математики и информатики	реферат
ЗНАТЬ: Современные методы построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных уравнениях. Код 31 (ПК-1)	Отсутствие знаний	Фрагментарные представления о современных методах построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных уравнениях.	В целом сформированные, но неполные знания о современных методах построения и анализа математических моделей, возникающих при решении естественнонаучных задачи и основанных на дифференциальных уравнениях.	Сформированные, но содержащие отдельные пробелы знания о современных методах построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных уравнениях.	Сформированные систематические знания о современных методах построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных уравнениях.	Устный экзамен
УМЕТЬ: Применять современные методы построения и анализа математических моделей, возникающих при решении естественнонаучных задач и ос-	Отсутствие умений	Фрагментарные умения применять современные методы построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных	В целом успешное, но не систематическое умение применять современные методы построения и анализа математических моделей, возникающих при решении ес-	Успешное, но содержащее отдельные пробелы умение применять современные методы построения и анализа математических моделей, возникающих при	Сформированное умение применять современные методы построения и анализа математических моделей, возникающих при решении естественнонаучных задач и основанных на дифференциальных	Контрольные работы

нованных на диф-		уравнениях.	тественнонауч-	решении естест-	уравнениях.	
ференциальных		уравнениях	ных задач и осно-	веннонаучных	уравнениях.	
1 * *			ванных на диффе-	задач и основан-		
уравнениях.			ренциальных	ных на диффе-		
Код У1 (ПК-1)			уравнениях.	ренциальных		
			уравнениях.	уравнениях.		
ВЛАДЕТЬ:	Отсутствие навыков	Фрагментарное	В целом	Успешное, но	Сформированное	Контрольные
навыками выбора	Отсутствие навыков	владение навыками	успешное, но не	содержащее	владение навыками	работы, реферат
современных		выбора современных	полное владение	отдельные	выбора современных	расоты, реферат
методов построения		методов построения	навыками выбора	пробелы владение	методов построения	
и анализа математи-		и анализа математи-	современных ме-	навыками выбора	и анализа математи-	
ческих моделей, воз-			_	*	ческих моделей, воз-	
		ческих моделей, воз-	тодов построения	современных ме-		
никающих при реше-		никающих при реше-	и анализа матема-	тодов построения	никающих при реше-	
нии естественнона-		нии естественнона-	тических моде-	и анализа матема-	нии естественнона-	
учных задач и осно-		учных задач и осно-	лей, возникающих	тических моде-	учных задач и осно-	
ванных на диффе-		ванных на диффе-	при решении ес-	лей, возникающих	ванных на диффе-	
ренциальных уравне-		ренциальных уравне-	тественнонауч-	при решении ес-	ренциальных уравне-	
ниях.		. ХRИН	ных задач и осно-	тественнонауч-	ниях.	
Код В1 (ПК-1)			ванных на диффе-	ных задач и осно-		
			ренциальных	ванных на диффе-		
			уравнениях.	ренциальных		
		-	D 1	уравнениях.		**
	Отсутствие знаний	Фрагментарные	В целом сформи-	Сформированные,	Сформированные	Устный экзамен
		представления о со-	рованные, но не-	но содержащие	систематические	
ЗНАТЬ:		временных методах	полные знания о	отдельные пробе-	знания о современ-	
современные методы		реализации различ-	современных ме-	лы знания о со-	ных методах реали-	
реализации различ-		ных математических	тодах реализации	временных мето-	зации различных ма-	
ных математических		алгоритмов в виде	различных мате-	дах реализации	тематических алго-	
алгоритмов в виде		программных ком-	матических алго-	различных мате-	ритмов в виде про-	
программных ком-		плексов, особенно-	ритмов в виде	матических алго-	граммных комплек-	
плексов, особенности		стях современных	программных	ритмов в виде	сов, особенностях	
современных вычис-		вычислительных	комплексов, осо-	программных	современных вычис-	
лительных комплек-		комплексов	бенностях совре-	комплексов, осо-	лительных комплек-	
СОВ			менных вычисли-	бенностях совре-	СОВ	
Код 31 (ПК-4)			тельных комплек-	менных вычисли-		
			СОВ	тельных комплек-		
				СОВ		

УМЕТЬ:	Отсутствие умений	Фрагментарные	В целом	Успешное, но	Сформированное	отчет
применять		умения применять	успешное, но не	содержащее	умение применять	
современные методы		современные методы	систематическое	отдельные	современные методы	
реализации различ-		реализации различ-	умение применять	пробелы умение	реализации различ-	
ных математических		ных математических	современные	применять совре-	ных математических	
алгоритмов в виде		алгоритмов в виде	методы реализа-	менные методы	алгоритмов в виде	
программных ком-		программных ком-	ции различных	реализации раз-	программных ком-	
плексов с учетом		плексов с учетом	математических	личных матема-	плексов с учетом	
особенностей		особенностей	алгоритмов в виде	тических алго-	особенностей	
современных		современных	программных	ритмов в виде	современных	
вычислительных		вычислительных	комплексов с уче-	программных	вычислительных	
комплексов		комплексов	том особенностей	комплексов с уче-	комплексов	
Код У1 (ПК-4)			современных	том особенностей		
			вычислительных	современных		
			комплексов	вычислительных		
				комплексов		
ВЛАДЕТЬ:	Отсутствие навыков	Фрагментарное	В целом	Успешное, но	Сформированное	отчет
навыками оптималь-		владение навыками	успешное, но не	содержащее	владение навыками	
ного выбора и созда-		оптимального выбора	полное владение	отдельные	оптимального выбора	
ния новых современ-		и создания новых	навыками опти-	пробелы владение	и создания новых	
ных методов реали-		современных мето-	мального выбора	навыками опти-	современных мето-	
зации математиче-		дов реализации ма-	и создания новых	мального выбора	дов реализации ма-	
ских алгоритмов в		тематических алго-	современных	и создания новых	тематических алго-	
виде программных		ритмов в виде про-	методов реализа-	современных	ритмов в виде про-	
комплексов, учиты-		граммных комплек-	ции математиче-	методов реализа-	граммных комплек-	
вающих особенности		сов, учитывающих	ских алгоритмов в	ции математиче-	сов, учитывающих	
современных		особенности	виде программ-	ских алгоритмов в	особенности	
вычислительных		современных	ных комплексов,	виде программ-	современных	
комплексов		вычислительных	учитывающих	ных комплексов,	вычислительных	
Код В1 (ПК-4)		комплексов	особенности	учитывающих	комплексов	
			современных	особенности		
			вычислительных	современных		
			комплексов	вычислительных		
				комплексов		

Список вопросов для устного экзамена.

5. Список вопросов выносимых на экзамен

- 1. Пример формулировки задачи Коши для дифференциальных уравнений в частных производных.
- 2. Задача Коши для нормальной системы обыкновенных дифференциальных уравнений. Автономная система. Параметрическая система. Постановка задачи для матрицы-функции. Матрица Якоби потока. Уравнение в вариациях. Разделенная форма уравнений. Специальная разделенная форма. Примеры задач.
- 3. Формулировка задачи Коши для системы дифференциально-алгебраической системы уравнений. Индекс системы. Примеры задач.
- 4. Задача Коши для дифференциальных уравнений с отклоняющимся аргументом. Пример задачи.
- 5. Теоремы существования, единственности и дифференцируемости решения задачи Коши для нормальной системы обыкновенных дифференциальных уравнениий. Примеры задач, для которых не выполняются условия теорем.
- 6. Естественная параметризация решений задачи Коши. Выполнить параметризацию для системы "орегонатор".
- 7. Векторное поле. Фазовое пространство и расширенное фазовое пространство. Фазовый поток. Уравнение в вариациях. Представление решения. Примеры.
- 8. Постановка задачи для уравнений второго порядка. Редукция задачи для уравнения высокого порядка к задаче для нормальной системе обыкновенных дифференциальных уравнений. Примеры задач для уравнений второго порядка.
- 9. Первые интегралы. Полная система первых интегралов.
- 10. Инвариантность линейной формы. Сохранение квадратичной формы. Сохранение определителя матрицы и скалярного произведения.
- 11. Сохранение ортогональности столбцов матрицы. Сохранение собственных чисел матрицы.
- 12. Симплектичность. Теорема Пуанкаре о симплектичности фазового потока. Примеры симплектичных систем.
- 13. Изменение фазового объема. Теорема Лиувилля. Консервативные и диссипативные системы.
- 14. Задача Коши для системы линейных неоднородных уравнений. Представление решений. Точные решения задачи для однородных уравнений. Приведение матриц к диагональному виду.
- 15. Вещественное разложение Шура. Жорданова форма.
- 16. Многоточечная краевая задача для нормальной системы обыкновенных дифференциальных уравнений. Постановка и решение задачи о переносе условий.
- 17. Дифференциальная прогонка.
- 18. Определение собственных значений и собственных функций с помощью переноса граничных условий.
- 19. Задача Штурма-Лиувилля.
- 20. "Радиальная" задача о состояниях водородоподобного атома.
- 23. Одномерное движение в потенциальной яме. Отражение от симметричного потенциального барьера. Движение над потенциальным барьером.
- 24. Движение материальной точки в плоском центральном поле. Сохранение полной энергии и момента количества движения. Точное решение в виде квадратур. Второй закон Кеплера. Финитные и инфинитные движения. Закнутые и незамкнутые траектории.
- 25. Формулировка задачи двух тел. Редукция к задаче о движении в центральном поле.

- 26. Симплектичность гамильтоновых систем. Теорема Пуанкаре.
- 27. Сохранение фазового объема в задаче Коши для гамильтоновых систем.
- 28. Обратимость во времени.
- 29. Определение жесткой задачи. Примеры жестких задач.
- 30. Диффузионная неустойчивость Тьюринга.
- 31. Фазовый портрет. Особые точки векторного поля. Линеаризованная система. Матрица Якоби в особой точке. Невырожденная особая точка. Гиперболические особые точки.
- 32. Устойчивость особых точек. Теорема Ляпунова об устойчивости по первому приближению. Функция Ляпунова. Достаточные условия устойчивости. Примеры особых точек.
- 33. Сепаратрисы особых точек. Гомоклинические траектории. Гетероклинические траектории. Сепаратрисный контур. Определение инвариантных многообразий гиперболических особых точек.
- 34. Периодические решения. Предельные циклы. Орбитальная устойчивость. Теорема Флоке. Матрица монодромии. Показатели Флоке. Мультипликаторы цикла.
- 35. Вычисление мультипликаторов. Теорема об устойчивости периодического решения. Полуустойчивый, гиперболический, седловой, невырожденный предельные циклы.
- 36. Отображение Пуанкаре. Последовательность преобразований Пуанкаре. Устойчивость неподвижной точки преобразования Пуанкаре.
- 37. Устойчивость решений задачи Коши. Показатели Ляпунова. Показатели Ляпунова для особой точки, предельного цикла, инвариантного тора.
 - 38. Области притяжения. Поглощающие множества. Аттрактор. Эргодическое движение. Странные аттракторы. Система Лоренца.

Материалы для мероприятий текущего контроля.

Мероприятия текущего контроля реализуются в виде тестов с выбором вариантов ответа. Два набора тестов охватывают теоретический материал, относящийся соответственно к темам 2, 3, 4 и 5, 6. Вопросы тестов соответствуют приведенным выше вопросам к устному экзамену, раскрывая их на более подробном уровне.

Примерные темы рефератов.

Реферат посвящен Теме 4. Примеры тем:

- 1. Задача о свободном движении множества взаимодействующих материальных точек и глобальные свойства ее решения.
- 2. Движение материальной точки в центральном поле и его особенности.
- 3. Свойства решений задачи Кеплера.
- 4. Математические модели окисления моноксида углерода на платиновом катализаторе.
- 5. Задача о движении трех тел и ее частные решения.

Особенности организации процесса обучения

Для эффективного освоения курса рекомендуется перед каждым занятием привести в порядок конспекты лекций. После каждого занятия рекомендуется найти и прочитать дополнительную литературу по теме лекции, придумать примеры, иллюстрирующие основные утверждения, прочитать и дополнить свои конспекты.

Структура и график контрольных мероприятий

Контрольные работы на 6-й и 12-й неделях, реферат в течение семестра, устный экзамен в конце семестра.