Д.С. Филиппычев

О РЕШЕНИИ ОДНОГО СИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ^{*}

1. Введение

В работе [1] для получения асимптотического решения сингулярно возмущенного интегро-дифференциального уравнения плазма-слой с ядром Эммерта [2] использовался метод пограничных функций [3-5]. Это уравнение описывает распределение потенциала, как в слое, так и в основном объеме плазмы. В методе пограничных функций [3-5] решение представляется в виде регулярного и пограничного рядов по степеням малого параметра μ :

$$u(\xi,\mu) = Ru(\xi,\mu) + \Pi u(\xi,\mu),$$

$$Ru(\xi,\mu) = R_0 u(\xi) + \mu R_1 u(\xi) + \dots + \mu^n R_n u(\xi) + \dots,$$

$$\Pi u(\xi,\mu) = \Pi_0 u(\xi) + \mu \Pi_1 u(\xi) + \dots + \mu^n \Pi_n u(\xi) + \dots$$

Коэффициенты рядов $Ru(\xi,\mu)$, $\Pi u(\zeta,\mu)$ определяются в результате формальной подстановки разложения в рассматриваемое уравнение. Затем, члены одного порядка по μ в правой и левой частях уравнения приравниваются. Такая процедура производится раздельно, как для членов, зависящих от ξ , так и для членов, зависящих от $\xi = (1-\xi)/\mu$ – растянутой переменной.

В данной работе рассматривается только регулярный ряд $Ru(\xi,\mu)$. В результате применения метода пограничных функций к уравнению плазма-слой была получена система уравнений для определения неизвестных функций $R_k(\xi)$ [1]. Первые два коэффициента регулярного ряда выглядят следующим образом [1]:

$$0 = R_0 F(u, \xi) = f(u(\xi), \xi), \qquad 0 = R_1 F(u, \xi).$$

Первое соотношение представляет собой вырожденное (μ = 0) уравнение плазма-слой (уравнение *плазменного приближения*), в то время как второе является однородным сингулярным интегральным уравнением первого рода, описывающим поведение поправки первого порядка регулярного ряда. Из общих соображений, в работе [1] было сделано утверждение, это уравнение имеет только тривиальное решение. В данной

72

^{*} Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований, Грант РФФИ 11-01-00216-а.

работе дается обоснование этого утверждения об отсутствии нетривиального решения.

2. Уравнение плазма-слой Эммерта [2]

Для тепловых ионов уравнение плазма-слой было получено в работе [2]. В безразмерных переменных (ξ – пространственная переменная; $u(\xi)$ – потенциал) оно выглядит следующим образом:

$$\mu^{2} \frac{d^{2}u}{d\xi^{2}} = -e^{-u} + be^{\chi u} \left\{ J^{1} - J^{\xi}(u) \right\} \equiv f(u, \xi) , \qquad (1)$$

$$J^{1} = \int_{0}^{1} h(\xi') K^{1}(u') d\xi', \quad J^{\xi}(u, \xi) = \int_{0}^{\xi} h(\xi') K^{\xi}(u, u') d\xi', \qquad K^{1}(u') = e^{-\chi u'}, \quad K^{\xi}(u, u') = e^{-\chi u'} erf(\sqrt{\chi(u - u')}).$$

Здесь были использованы обозначения: $h(\xi)$ – функция формы источника ионов, $u=u(\xi)$, $u'=u(\xi')$, $\operatorname{erf}(x)$ – функция ошибок (интеграл вероятностей). χ , Z, b, μ – параметры задачи, имеющие постоянные значения.

В работе [2] уравнение (1) дополнялось краевыми условиями: u(0)=0 в начале координат и условием на стенке $u(1)=u_w$. В газоразрядной плазме выполняется неравенство $\mu{<<}1$, поэтому в уравнении (1) перед старшей производной стоит малый параметр μ^2 . Положив формально $\mu{=}0$, получим *плазменное приближение* $(0=f(u,\xi))$, которое справедливо только в области вне пристеночного слоя:

$$e^{-u} = be^{\chi u} \{ J^1 - J^{\xi}(u) \}, \quad u(0) = 0.$$
 (2)

Поскольку частная производная $f(u,\xi)$ по ξ равна нулю, а именно

$$f_{\xi} = \frac{\partial f}{\partial \xi} = -be^{\chi u} \frac{\partial}{\partial \xi} \left(J^{\xi}(u) \right) = -bh(\xi) \operatorname{erf}(\sqrt{\chi(u - u')}) \Big|_{u' = u} = 0,$$

то дифференцирование по ξ сводится к дифференцированию по u $df/d\xi = f_u \, du/d\xi + f_\xi = f_u \, du/d\xi$. Используя (2), получаем:

$$f_{u}(u,\xi) = (1+\chi)e^{-u_{0}} - b\sqrt{\frac{\chi}{\pi}} \int_{0}^{\xi} \frac{h(\xi')d\xi'}{\sqrt{u(\xi) - u(\xi')}} = 0.$$
 (3)

Замена переменной интегрирования $d\xi' \to (d\xi'/du')du'$ приводит к интегральному уравнению

$$e^{-u(\xi)} = B \int_{0}^{u(\xi)} \frac{d\xi'}{du'} h(u') \frac{du'}{\sqrt{u - u'}},$$

решение которого было получено в неявном виде для произвольной функции источника $h(\xi)$ [2] и имеет вид:

$$\pi Bh(u)\sqrt{u}\frac{d\xi}{du} = 1 - 2\sqrt{u}D(\sqrt{u}). \tag{4}$$

Здесь $D(x) \equiv \exp(-x^2) \int_0^x \exp(t^2) dt$ — функция Доусона, $B \equiv b \sqrt{\chi/\pi} / (1 + \chi)$.

В данной работе используется функция $h(\xi)$, соответствующая одной из форм источника работы [2]

$$h(\xi) = \begin{cases} 2, & 0 < \xi < 1/2 = \xi_{S}, \\ 0, & 1/2 < \xi. \end{cases}$$
 (5)

При этом решение плазменного приближения дается выражением

$$\begin{cases}
\pi B \xi = D\left(\sqrt{u_0(\xi)}\right), & 0 \le \xi < 1/2, \\
\pi B = 2D\left(\sqrt{u_0(\xi)}\right), & \xi \ge 1/2.
\end{cases}$$
(6)

После интегрирования по всей области с учетом нормировки работы [2] $\int\limits_0^1 h(\xi')d\xi'=1$ получается соотношение $\pi B=2D(\sqrt{u_1})$. Здесь величина u_1 соответствует значению решения уравнения (2) на входе в слой $\xi=1$.

Физические параметры задачи, использованные в расчетах, также соответствовали параметрам работы [2]: $Z=1, \chi=1$. Значения $u_0(\xi)$ получаются в результате численного решения уравнения (6) методом деления отрезка пополам. При значениях $\xi \ge 1/2$ решением является $u_0(\xi) = const = u_0(1) = u_1 = 0.40445$.

Следует отметить соотношения, которые получаются при $\xi = 0$, соответственно, из (2) и (3):

$$J^{1} = \int_{0}^{1} e^{-\chi u'_{0}} h(\xi') d\xi' = \frac{1}{b}, \quad \int_{0}^{\xi=0} \frac{h(\xi') d\xi'}{\sqrt{u_{0}(\xi) - u_{0}(\xi')}} = \frac{(1+\chi)}{b} \sqrt{\frac{\pi}{\chi}}.$$

Для выбранной формы источника (5) эти соотношения переходят в:

$$\int_{0}^{\xi_{S}} e^{-\chi u'_{0}} d\xi' = 1/2b = 0.4528,$$

$$\int_{0}^{\xi=0} \frac{h(\xi')d\xi'}{\sqrt{u_{0}(\xi) - u_{0}(\xi')}} = \frac{(1+\chi)}{b} \sqrt{\frac{\pi}{\chi}} \equiv C_{RP} = 1.605.$$
(7)

3. Коэффициент первого приближения регулярного ряда $R_1u(\xi)$.

Коэффициент при первой степени μ регулярной части разложения решения $Y(\xi) \equiv R_1 u(\xi)$ определяется из соотношения $R_1 F(u,\xi) = 0$. $R_1 F(u,\xi)$ представляет собой сумму двух слагаемых (подробнее, см. [1]). Первое слагаемое получается в результате дифференцирования функции $f\left(u(\xi;\mu),\xi\right)$ по μ $\left(d/d\mu=f_u\,du/d\mu\right)$, взятой на плазменном решении $u(\xi)=u_0(\xi)$ при $\mu=0$. Поскольку $f_u(u_0,\xi)=0$ (3), то это слагаемое обращается в нуль. Второе слагаемое получается в результате разложения в ряд ядер интегралов (при первой степени по μ) и рассмотрения членов относящихся к переменной интегрирования $u'=u(\xi')$. Таким образом, для функции $R_1u(\xi)$ получается однородное сингулярное интегральное уравнение первого рода:

$$\chi e^{\chi u_0} C_{un} - \int_0^{\xi^*} K_x(x) Y(\xi') d\xi' = 0, \ C_{un} \equiv \chi \int_0^{\xi_s} e^{-\chi u_0'} Y(\xi') d\xi', \ Y(\xi = 0) = 0.$$
 (8)

Здесь
$$\xi^* = \begin{cases} \xi^* = \xi, \ 0 \le \xi \le 1/2 = \xi_S \\ \xi^* = 1/2, \ 1/2 < \xi \le 1 \end{cases}$$
, $K_x(x) = \begin{cases} \chi e^{\chi x} \Big[\operatorname{erf}(\sqrt{\chi x}) \Big] + \sqrt{\frac{\chi}{\pi x}} \\ \chi = u(\xi) - u(\xi'). \end{cases}$

Первый интеграл в левой части не зависит от ξ и, следовательно, равен постоянной величине. C_{un} является функционалом от искомого решения $Y(\xi)$, т.е. $C_{un} = C_{un}[Y]$. Целесообразно представить интеграл в левой части (8), как суперпозицию двух интегралов:

$$\begin{split} & \int\limits_{0}^{\xi^{*}} K_{x}(x) Y(\xi') d\xi' = \chi \mathbf{I}^{(1)}(\xi) + \sqrt{\chi/\pi} \, \mathbf{I}^{(2)}(\xi) \,, \\ & \mathbf{I}^{(1)}(\xi) = \int\limits_{0}^{\xi^{*}} \mathrm{e}^{\chi(u_{0}(\xi) - u_{0}(\xi'))} \mathrm{erf}\left(\sqrt{\chi(u_{0}(\xi) - u_{0}(\xi'))}\right) Y(\xi') d\xi' \,\,, \\ & \mathbf{I}^{(2)}(\xi) = \int\limits_{0}^{\xi^{*}} \frac{Y(\xi')}{\sqrt{u_{0}(\xi) - u_{0}(\xi')}} d\xi' \,\,. \end{split}$$

В результате уравнение (8) приводится к следующему виду:

$$C_{un} = e^{-\chi u_0} \left\{ \chi I^{(1)}(\xi) + \sqrt{\chi/\pi} I^{(2)}(\xi) \right\} \equiv Inv(\xi).$$
 (9)

Из приведенных выше выражений следует, что в области вне источника $(1/2 = \xi_S \le \xi \le L = 1)$ искомая поправка имеет постоянное значение $Y(\xi) = R_1 u(\xi) = const = Y(\xi_S)$,

поскольку в этой области $u_0(\xi) = const = u_0(\xi = \xi_s = 1/2) = u_0(\xi = 1)$. Таким образом, уравнение (9) достаточно решить только в области источника $(0 \le \xi \le \xi_s = 1/2)$.

Рассматриваемое однородное сингулярное интегральное уравнение (8) (или (9)) всегда имеет тривиальное решение $Y(\xi) = 0$. Помимо этого оно может иметь бесконечно много нетривиальных решений.

4. Численное решение интегрального уравнения.

Аппроксимация интегралов. В интегральном уравнении (9) левую часть C_{un} можно рассматривать как неизвестную постоянную. Тогда это уравнение переписывается как уравнение Вольтерра первого рода:

$$C_{un} = e^{-\chi u_0} \left\{ \chi I^{(1)}(\xi) + \sqrt{\chi/\pi} I^{(2)}(\xi) \right\}, Y(0) = 0.$$

Для нахождения значений $Y(\xi)$ в точках равномерной сетки с шагом $h\left(\xi_1=0;\,\xi=\left(j-1\right)h;\,j=1,2,...,N+1=N_S;\,\xi_{N_S}=\xi_S=1/2\right)$ применялся метод простой итерации. Полученные на s-ой итерации значения $Y(\xi)$ использовались для вычисления интеграла C_{un} .

Аппроксимация всех интегралов $(C_{un}, I^{(1)}(\xi), I^{(2)}(\xi)$ и т.д.) проводилась на каждом шаге сетки по квадратурной формуле Гаусса с использованием

$$n_{GK} = 2N_{GK} + 1$$
 узлов $\int_{-1}^{1} f(x)dx \approx \sum_{k=1}^{n_{GK}} f(x_k)w_k$, где x_k – координата k -ой

точки интегрирования, w_k – соответствующий весовой коэффициент. Такая аппроксимация была выбрана с учетом того, что в сингулярном интеграле $\mathbf{I}^{(2)}(\xi)$ имеется особенность на верхнем пределе интегрирования. На верхнем пределе интеграла $\mathbf{I}^{(1)}(\xi)$ подынтегральное выражение обращается в нуль и аппроксимация по квадратурной формуле Гаусса на последнем шаге оказывается целесообразным для более точного вычисления интеграла. Приведение интеграла на шаге сетки к "стандартному" виду проводится с помощью линейного преобразования $\xi = Ax + P$, где $A = (\xi_i - \xi_{i-1})/2 = h/2$, $P = (\xi_i + \xi_{i-1})/2 = \xi_i - h/2$.

Для определения значений $Y(\xi)$ в точках интегрирования ξ_k используется линейная интерполяция. Таким образом, интегралы правой части уравнения (9) аппроксимируются по формулам (m=1, 2):

$$I_{i}^{(m)} = I^{(m)}(\xi_{i}) \equiv S_{m,i} + G_{i}^{m} Y_{i},$$

$$S_{m,i} = \frac{1}{2} \sum_{j=2}^{i-1} \left(\sum_{k=1}^{n_{GK}} K_{m}(\xi_{i}, \xi_{k}) w_{k} \left(\left[(\xi_{k} - \xi_{j-1}) Y_{j} + (\xi_{j} - \xi_{k}) Y_{j-1} \right] / (\xi_{j} - \xi_{j-1}) \right) \right) +$$

$$(10)$$

$$+ \left[\frac{1}{2} \sum_{k=1}^{n_{GK}} K_m(\xi_i, \xi_k) w_k(\xi_i - \xi_k) \right] Y_{i-1}, G_i^m = \left[\frac{1}{2} \sum_{k=1}^{n_{GK}} K_m(\xi_i, \xi_k) w_k(\xi_k - \xi_{i-1}) \right] Y_i.$$

Как известно, дискретный аналог уравнения Вольтерра разрешим в том смысле, что значения неизвестных $Y_2, Y_3, ..., Y_{N+1}$ находятся из последовательных вычислений. Собирая вместе все приведенные выше аппроксимации, получаем формулу для последовательного вычисления

$$Y_{i} = \frac{C_{un} e^{\chi u_{0,i}} - \chi S_{1,i} - \sqrt{\chi/\pi} S_{2,i}}{\chi G_{i}^{(1)} + \sqrt{\chi/\pi} G_{i}^{(2)}}.$$
(11)

Тестовые расчеты для квадратурных формул. Аппроксимации интегралов уравнения (9) по квадратурным формулам Гаусса (типа (10)) проверялись в ряде тестовых расчетов. Использовалось $n_{GK} = 9$ ($N_{GK} = 4$) точек аппроксимации. Ряд полезных соотношений можно получить для интегралов с $Y(\xi) \equiv 1$. При этом используется выбранная форма

источника $h(\xi)$ (5). Так из соотношения (7) получаем $2\int_{0}^{\xi_{s}}e^{-\chi u_{0}'}d\xi'-\frac{1}{b}=0$.

При вычислениях ошибка составляла $\Delta = -1.1 \times 10^{-5}$ при 1/b = 0.9056.

Из соотношения (3) получается выражение

$$I^{(2)}[Y(\xi) \equiv 1] = \int_{0}^{\xi} \frac{d\xi'}{\sqrt{u_0(\xi) - u_0(\xi')}} = \frac{(1 + \chi)}{2b} \sqrt{\frac{\pi}{\chi}} e^{-u_0},$$

из которого следует равенство

$$I^{(2)} [Y(\xi) \equiv 1] e^{u_0(\xi)} - C_{RP} = 0, \quad C_{RP} \equiv \frac{(1+\chi)}{2b} \sqrt{\frac{\pi}{\chi}}, \quad (12)$$

а при $\xi = 0$ получается предельное значение интеграла

$$\int_{0}^{\xi=0} \frac{d\xi'}{\sqrt{u_0(\xi) - u_0(\xi')}} = \frac{(1+\chi)}{2b} \sqrt{\frac{\pi}{\chi}} = C_{RP} = 1.605.$$

При вычислениях по формуле (12) максимальная ошибка (по всей области $0 < \xi \le 0.5$) равнялась $\Delta_{\max} = 0.345$ и достигалась в точке $\xi_2 = h = 0.005$. При увеличении ξ ошибка резко уменьшается до величины $\Delta = -0.00691$ ($\xi_2 = 0.03$). После достижения значения $\xi_{14} = 0.065$ ($\Delta = -0.01208$) ошибка монотонно уменьшается вплоть до значения $\Delta = -0.0039$ на правой границе области расчета $\xi_s = \xi_{101} = 0.5$.

В серии расчетов с заданным начальным профилем $Y(\xi)$ вычислялась левая часть уравнения (9), т.е. C_{un} . Полученное значение C_{un}

использовалось в формуле (11) для получения решения в узлах сетки $Y_i = Y(\xi_i)$. После этого вычислялись правые части уравнения (9). Использовались начальные профили $Y(\xi)$ трех типов:

- "точное решение", т.е. разница между решением уравнения плазмаслой, полученным численным решением в работе [6,7], и плазменным решением (6): $C_{un} = -0.041333$, $\Delta_{\min} = -4.9 \times 10^{-18}$, $\Delta_{\max} = 5.4 \times 10^{-18}$;
- линейная зависимость $Y(\xi) = a\xi$; a = -6 отрицательные значения: $C_{un} = -0.641535$, $\Delta_{\min} = -9.1 \times 10^{-17}$, $\Delta_{\max} = 1.0 \times 10^{-16}$;
- квадратичная зависимость $Y(\xi) = a\xi^2 + b\xi$, a = 2(8-b), $Y(\xi = 1/2) = 4$; $b = -7, -6, -4, \dots$, $6, 7: C_{un} = 0.281196 \div 0.817101$, $\Delta_{\min} = -2.8 \times 10^{-17} \div -1.5 \times 10^{-16}, \ \Delta_{\max} = 2.7 \times 10^{-17} \div 1.1 \times 10^{-16}.$

Результаты расчетов представлены в таблице: ξ_{ext} – координата экстремума профиля; при $\xi_{ext} \leq 0$ профиль положительный и возрастающий; $0 < \xi_{ext} \leq \xi_S = 1/2$ профиль функции $Y_0(\xi)$ меняет знак – с отрицательных значений на положительные. В колонках Error показаны минимальное Δ_{min} и максимальное Δ_{max} значения разности между правой и левой частями уравнения (9).

Таблица

				Error	
a	b	ξ_{ext}	C_{un}	Min	max
"точное" решение			-0.0415333	-4.9×10^{-18}	5.39×10^{-18}
Linear $Y(\xi) = a\xi$					
-6			-0.641535	-9.1×10^{-17}	1.0×10^{-16}
6			0.641535	-1.0×10^{-16}	9.1×10^{-17}
Quadratic $Y(\xi) = a\xi^2 + b\xi$; $a = 2(8-b)$					
30	-7	0.12	0.281196	-2.8×10^{-17}	2.7×10 ⁻¹⁷
28	-6	0.11	0.319475	-4.5×10^{-17}	4.4×10 ⁻¹⁷
24	-4	0.08	0.396033	-5.0×10^{-17}	4.5×10 ⁻¹⁷
28	-2	0.05	0.472591	-5.2×10^{-17}	5.3×10^{-17}
16	0	0.00	0.549149	-5.5×10^{-17}	5.6×10 ⁻¹⁷
12	2	-0.08	0.625707	-9.4×10^{-17}	9.0×10^{-17}
8	4	-0.25	0.702264	-8.9×10^{-17}	1.0×10^{-16}
4	6	-0.75	0.778822	-1.0×10^{-16}	8.9×10 ⁻¹⁷
2	7	-1.75	0.817101	-1.5×10^{-16}	1.1×10^{-16}

Приведенные результаты расчетов показали высокую точность как аппроксимации интегралов, так и вычисления $Y_i = Y(\xi_i)$ по формуле (11). Во всех рассмотренных случаях в итерационном процессе как $Y_i = Y(\xi_i)$, так и C_{un} стремились к нулевым значениям, т.е. наблюдался выход на тривиальное решение.

5. Отсутствие нетривиального решения интегрального уравнения.

Перепишем соотношение (9) в виде операторного уравнения;

$$\hat{A}[Y(\xi)] = 0,$$

$$\hat{A}[\cdot] = \chi \left\{ e^{\chi u_0} \int_0^{\xi_s} e^{-\chi u_0'} [\cdot] d\xi' - \int_0^{\xi} e^{\chi(u_0(\xi) - u_0(\xi'))} \operatorname{erf} \left(\sqrt{\chi(u_0(\xi) - u_0(\xi'))} \right) [\cdot] d\xi' \right\} -$$

$$-\sqrt{\frac{\chi}{\pi}} \int_{0}^{\xi} \frac{\left[\cdot\right] d\xi'}{\sqrt{u_0(\xi) - u_0(\xi')}}.$$
 (13)

Здесь верхний предел интегрирования ξ^* заменен на ξ , поскольку рассматривается только область источника $(0 \le \xi \le \xi_s = 0.5)$. В случае $Y(\xi) \equiv C = const$ получаем $C\hat{A}[1] = 0$. Последнее соотношение может выполняться, во-первых, когда C = 0 (тривиальное решение) и, вовторых, когда $\hat{A}[1] = 0$. В последнем случае в уравнение (13) входят функции только на плазменном решении $u_0(\xi)$.

Покажем, что $\hat{A}[1] \neq 0$. После замены фигурной скобки ее выражением, вытекающим из (2), левая часть уравнения (13) преобразуется к виду:

$$-\hat{A}[1] = \sqrt{\frac{\chi}{\pi}} \int_{0}^{\xi} \frac{d\xi'}{\sqrt{u_0(\xi) - u_0(\xi')}} - \frac{\chi}{2b} e^{-u_0(\xi)}.$$

Из соотношения (3) вытекает равенство

$$\int_{0}^{\xi} \frac{d\xi'}{\sqrt{u_{0}(\xi) - u_{0}(\xi')}} = \frac{\left(1 + \chi\right)}{2b} \sqrt{\frac{\pi}{\chi}} e^{-u_{0}(\xi)} = C_{RP} e^{-u_{0}(\xi)},$$

которое приводит к искомому неравенству:

$$-\hat{A}[1] = \frac{e^{-u_0(\xi)}}{2b} ((\chi + 1) - \chi) = \frac{e^{-u_0(\xi)}}{2b} \neq 0.$$

Соотношение (9) должно выполняться для любого ξ из диапазона $0 \le \xi \le \xi_s = 1/2$ и, следовательно, при $\xi = 0$ $C_{un} = \sqrt{\chi/\pi} \, \mathrm{I}^{(2)} \big(\xi = 0 \big).$

Сделаем в интеграле $I^{(2)}(\xi)$ замену переменной интегрирования $\xi' \to u'$. После использования формулы (4) получим

$$\begin{split} \mathbf{I}^{(2)}(\xi) &= \int_{0}^{\xi} \frac{Y(\xi')d\xi'}{\sqrt{u_{0}(\xi) - u_{0}(\xi')}} = \int_{0}^{u_{0}} \frac{Y(\xi')}{\sqrt{u_{0} - u_{0}'}} \frac{d\xi'}{du_{0}'} du_{0}' = \\ &= \frac{1}{2\pi B} \int_{0}^{u_{0}} \frac{Y(u_{0}')}{\sqrt{u_{0} - u_{0}'}} \frac{\left(1 - 2\sqrt{u_{0}'}D(\sqrt{u_{0}'})\right)}{\sqrt{u_{0}'}} du_{0}'. \end{split}$$

Рассмотрим малую окрестность начала координат $0 \le \xi \le \varepsilon$, в которой $Y(\xi)$ можно аппроксимировать с большой точностью линейной зависимостью $Y(\xi) = \alpha u_0$. Тогда получим

$$I^{(2)}(\varepsilon) = \frac{\alpha}{2\pi B} \int_{0}^{u_0(\varepsilon)} \frac{u'_0}{\sqrt{u_0(\varepsilon) - u'_0}} \frac{\left(1 - 2\sqrt{u'_0}D(\sqrt{u'_0})\right)}{\sqrt{u'_0}} du'_0.$$

После замены переменной интегрирования $u_0' = t^2 u_0 \ (u_0' = u_0 \ 2t dt)$ и простых преобразований получаем равенство

$$I^{(2)}(\varepsilon) = \frac{\alpha u_0(\varepsilon)}{\pi B} \left\{ \int_0^1 \frac{dt}{\sqrt{1 - t^2}} - \int_0^1 \sqrt{1 - t^2} \left[1 - 2t \sqrt{u_0(\varepsilon)} D\left(t \sqrt{u_0(\varepsilon)}\right) \right] dt - 2\sqrt{u_0(\varepsilon)} \int_0^1 \frac{D(t \sqrt{u_0(\varepsilon)})}{\sqrt{1 - t^2}} t dt \right\}.$$

Первый интеграл правой части является табличным и равняется $\arcsin(t)\big|_0^1=\pi/2$, $\arcsin(t)\big|_0^1=\pi/2$, $\arcsin(t)\big|_0^1=\pi/2$, второй интеграл не имеет особенностей, а третий равняется $\frac{\pi}{4}\sqrt{u_0(\varepsilon)}-u_0(\varepsilon)\int\limits_0^1 D(t\sqrt{u_0(\varepsilon)})\sqrt{1-t^2}\,2tdt$, т.е. также не имеет особенностей. При $\varepsilon\to 0$ $u_0(\varepsilon)\to 0$ и правая часть равенства обращается в нуль $\mathrm{I}^{(2)}\big(\varepsilon=0\big)=0$. Следовательно, $C_{un}=0$ и $\int\limits_0^{\xi_S}e^{-\chi u_0'}Y(\xi')d\xi'=0$. Из последнего равенства вытекает $Y(\xi)=0$. Таким образом, однородное линейное сингулярное интегральное уравнение (9) имеет только тривиальное решение.

Литература

1. Филиппычев Д.С. Метод пограничных функций для получения асимптотического решения уравнения плазма-слой.// Прикладная математика и информатика № 19: Сб. /Под ред. Д.П. Костомарова, В.И.Дмитриева - М: МАКС Пресс, 2004, С. 21-40.

- 2. Emmert G.A., Wieland R.M., Mense A.T., Davidson J.N. Electric sheath and presheath in a collisionless, finite ion temperature plasma.//Phys.Fluids.1980. Vol. 23, № 4. P. 803-812.
- 3. Васильева А.Б., Бутузов В.Ф. Асимптотические разложения решений сингулярно возмущенных уравнений. М.: *Наука*, 1973. 272 с.
- 4. Васильева А.Б., Бутузов В.Ф. Сингулярно возмущенные уравнения в критических случаях. М.: *Изд-во Моск.Ун-та*, 1978. 106с.
- 5. Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высшая Школа, 1990. 208с.
- 6. Филиппычев Д.С. Численное моделирование уравнения плазма-слой с использованием сгущающейся сетки.// Прикладная математика и информатика № 14: Сб. /Под ред. Д.П. Костомарова, В.И.Дмитриева-М: *МАКС Пресс*, 2003, С 35-54.
- 7. Филиппычев Д.С. Численное моделирование уравнения плазма-слой// Вестн. Моск.ун-та. Сер.15. Вычислительная математика и кибернетика. 2004. № 4.С. 32-39.