В.П. Горьков, В.А. Андрианов

ДВУМЕРНАЯ МОДЕЛЬ СТРИПОВОГО ДЕТЕКТОРА С ДВУМЯ ТУННЕЛЬНЫМИ ПЕРЕХОДАМИ

Введение

Криогенные детекторы на основе сверхпроводящих туннельных переходов (СТП-детекторы) обладают высоким разрешением по энергии и низким энергетическим порогом регистрации. Для рентгеновского излучения энергетическое разрешение СТП-детекторов более чем на порядок превосходит разрешение традиционных полупроводниковых детекторов [1]. В оптическом диапазоне СТП-детекторы способны регистрировать отдельные световые кванты [2]. Однако, существует целый ряд физиических процессов, ведущих к ухудшению характеристик детекторов и, прежде всего, их энергетического разрешения [3]. Существенным недостатком СТП- детекторов являются их малые рабочие площади. Для увеличения площади разрабатываются матрицы детекторов.

В [4] была предложена альтернативная конструкция СТП-детектора. Она получила название стрипового детектора. Он состоит из длинной сверхпроводящей полоски, которая на концах заканчивается ловушками квазичастиц и туннельными переходами (рис.1). Фотон, поглощенный в сверхпроводящей полоске, генерирует неравновесные квазичастицы, число которых пропорционально его энергии. Квазичастицы диффузионно распространяются по полоске-поглотителю и при достижении ее концов захватываются в области ловушек. Там они туннелируют, образуя сигналы детектора Q_l и Q_r пропорциональные числу квазичастиц, попавших в ловушки. Поскольку величины Q_{l} и Q_{r} зависят от места поглощения фотона, они несут информацию и о месте поглощения. Стриповые детекторы рассматриваются как наиболее перспективные для создания прецизионных детекторов фотонов в рентгеновской и оптической области энергий [5]. Имея множество пар чисел $\{Q_i, Q_r\}$ при случайных попаданиях фотонов в полоску детектора, нужно указать алгоритм оценки энергии фотонов и точность этой оценки.

В [4,6,7] рассматривались одномерные модели стриповых СТП- детекторов. В настоящей работе представлена двумерная модель, в которой рассмотрено влияние на энергетическое разрешение таких факторов как геометрические размеры полоски-поглотителя, потери квазичастиц в

Рис.1. Стриповый СТП-детектор с двумя сверхпроводящими туннельными переходами.

области полоски-поглотителя и на её боковых границах, эффективность захвата квазичастиц в область туннельного перехода, а также процессов собственной рекомбинации квазичастиц.

Постановка задачи

Полагаем, что облако неравновесных квазичастиц в области полоски-поглотителя характеризуется концентрацией u(x, y, t). Функция u(x, y, t) удовлетворяет уравнению параболического типа

$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - \mu - Ru^2, \ 0 < x < a, \ 0 < y < b, \ 0 < t < \infty$$
(1)

с однородными граничными условиями третьего рода при x = 0 и x = a

$$Du_x(a, y, t) = -\beta_1 u(a, y, t), \quad Du_x(0, y, t) = \beta_1 u(0, y, t)$$
 (2)

при y = 0 и y = b

$$Du_{y}(x,0,t) = \beta_{2}u(x,0,t), Du_{y}(x,b,t) = -\beta_{2}u(x,b,t).$$
(3)

Начальное условие задается функцией

$$u(x, y, 0) = N_0 \varphi(x, y).$$
 (4)

Здесь D – коэффициент диффузии, γ – коэффициент поглощения частиц в полоске-поглотителе, R – коэффициент рекомбинации квазичастиц, N_0 – число квазичастиц, образовавшихся при поглощении фотона в точке (x_0, y_0). В нашей модели часть квазичастиц, достигающих границ x = 0 и x = a, выходят из области полоски и попадают в ловушки, где туннелируют, образуя сигналы детектора Q_i и Q_r . Эфективность захвата квазичастиц в ловушку определяется коэффициентом β_i и краевыми условиями (2). Сигнал на левом конце полоски вычисляется по формуле

$$Q_{l} = D \int_{0}^{\infty} dt \int_{0}^{b} u_{x}(0, y, t) dy, \qquad (5)$$

а на правом –

$$Q_{r} = -D\int_{0}^{\infty} dt \int_{0}^{b} u_{x}(a, y, t) dy.$$
 (6)

Коэффициент β_2 определяет потери частиц на боковых границах при y = 0 и y = b согласно условию (3).

Область полосы $0 \le x \le a$, $0 \le y \le b$ покроим сеткой с шагами \hat{h}_x и \hat{h}_y , в узлы которой $x_0 = i \cdot \hat{h}_x$, $y_0 = j \cdot \hat{h}_y$, $i = \overline{1, n}$, $j = \overline{1, m}$ будем направлять падающие фотоны. В результате счета по формулам (5-6) будем иметь $n \times m$ пар (Q_1, Q_r) сигналов детектора и на этих значениях проанализируем влияние различных параметров на работу детектора.

Точечный источник

Решение задачи (1)-(4) для случая точечного источника $\varphi(x, y) = \delta(x - x_0)\delta(y - y_0)$ и отсутствия рекомбинации квазичастиц (R = 0) можно получить методом разделения переменных [8]. Оно имеет вид:

$$u(x, y, t) = \sum_{n,m=1}^{\infty} A_{nm} X_{n}(x) \cdot Y_{m}(y) \cdot T_{nm}(t), \quad (7)$$

$$X_{n}(x) = \cos(\lambda_{n}x) + \frac{\beta_{1}}{D\lambda_{n}} \sin(\lambda_{n}x), \quad Y_{m}(y) = \cos(\mu_{m}y) + \frac{\beta_{2}}{D\mu_{m}} \sin(\mu_{m}y),$$

$$T_{nm}(t) = e^{-t(\gamma + D(\lambda_{n}^{2} + \nu_{m}^{2}))}, \qquad A_{nm} = N_{0} \frac{X_{n}(x_{0})}{\|X_{n}\|^{2}} \frac{Y_{m}(y_{0})}{\|Y_{m}\|^{2}},$$

$$\|X_{n}\|^{2} = \frac{a(\lambda_{n}^{2} + \beta_{1}^{2}) + 2\beta_{1}\alpha}{2\lambda_{n}^{2}}, \qquad \|Y_{m}\|^{2} = \frac{b(\mu_{m}^{2} + \beta_{2}^{2}) + 2\beta_{2}}{2\mu_{m}^{2}},$$

где $\lambda_{_n}$ и $\mu_{_m}$ - положительные корни уравнений

$$ctg(\lambda) = \frac{1}{2} \left(\frac{\lambda}{h} - \frac{h}{\lambda} \right), \qquad ctg(\mu) = \frac{1}{2} \left(\frac{\mu}{g} - \frac{g}{\mu} \right).$$

Выражения для собираемых зарядов (5) и (6) для третьей краевой задачи имеют вид: для левого конца

$$Q_{l}(x_{0}, y_{0}) = 2N_{0}ha \cdot gb \sum_{n} \frac{X_{n}(x_{0})}{\|X_{n}\|^{2}} \sum_{m'} \frac{Y_{m}(y_{0})}{\|Y_{m}\|^{2}} \frac{1}{\nu_{m}^{2} \left(\frac{a^{2}}{\Lambda^{2}} + u_{n}^{2} + \nu_{m}^{2}r_{ab}^{2}\right)},$$
(8)

для правого конца

$$Q_{r}(x_{0}, y_{0}) = 2N_{0}ha \cdot gb \sum_{n} \frac{(-1)^{n+1}X_{n}(x_{0})}{\|X_{n}\|^{2}} \sum_{m'} \frac{Y_{m}(y_{0})}{\|Y_{m}\|^{2}} \frac{1}{v_{m}^{2} \left(\frac{a^{2}}{\Lambda^{2}} + u_{n}^{2} + v_{m}^{2}r_{ab}^{2}\right)}.$$
 (9)

Здесь введены безразмерные параметры $u_n = \lambda_n a$, $v_m = \mu_m b$, $h = \frac{\beta_1 a}{D}$,

$$g = \frac{p_2 b}{D}$$
, $\alpha = \frac{a}{\Lambda}$, $r_{ab} = \frac{a}{b}$, суммирование проводится по нечетным m' .
Параметр $\Lambda = \sqrt{\frac{D}{\gamma}}$ представляет диффузную длину.

Если потери квазичастиц на боковых границах полоски отсутствуют (g = 0), то сигналы детектора не зависят от координаты y_0 . При этом (8) и (9) преобразуются в выражения, зависящие только от x_0 [6]:

$$Q_{l}(x_{0}) = N_{0} \frac{\sinh \alpha (1 - x_{0}/a) + \varepsilon \cosh \alpha (1 - x_{0}/a)}{(1 + \varepsilon^{2}) \sinh(\alpha) + 2\varepsilon \cosh(\alpha)},$$
(10)

$$Q_r(x_0) = N_0 \frac{\sinh \alpha (x_0/a) + \varepsilon \cosh \alpha (x_0/a)}{(1+\varepsilon^2) \sinh(\alpha) + 2\varepsilon \cosh(\alpha)}, \quad \text{где } \varepsilon = \frac{\alpha}{h}.$$
(11)

Если на границах x = 0 и x = a параметр $h \to \infty$ ($\mathcal{E} = 0$), то выражения (10) и (11) принимают вид [4]:

$$Q_{I}(x_{0}) = N_{0} \frac{\sinh \alpha (1 - x_{0} / a)}{\sinh \alpha} \bowtie Q_{I}(x_{0}) = N_{0} \frac{\sinh \alpha (x_{0} / a)}{\sinh \alpha}.$$
(12)

Для изучения влияния параметров α , h и g на характеристики детектора были рассчитаны Q_i и Q_r , а также заряд $Q_{\Sigma} = Q_i + Q_r$ для различных координат поглощения фотона (x₀,y₀). На рис. 2. представлены результаты расчета при g=0, $\alpha = 1$ и $\varepsilon = 0$. Кривые 1, 2 и 3 соответствуют наборам $Q_i(x_0)$, $Q_r(x_0)$ и $Q_{\Sigma}(x_0)$ в зависимости от координаты поглощения кванта x_0 . При увеличении параметра $\alpha Q_{\Sigma}(x_0)$ опускается вниз (кривая 4). Уменьшение параметра h приводит к уменьшению $Q_{\Sigma}(x_0)$ (кривая 7).

Рис. 2. Сигналы детектора Q_t , Q_r и суммарный сигнал Q_{Σ} в зависимости от координаты поглощения кванта x_0 при g = 0, R = 0. Кривые 1, 2 и 3 – $\alpha = 1$, $\varepsilon = 0$; кривая 4 – $\alpha = 2$, $\varepsilon = 0$; кривые 5, 6 и 7 – $\alpha = 1$, $\varepsilon = 0.02$.

При учете краевых потерь ($g \neq 0$) возникает зависимость сигналов от координаты y_0 .На рис. 3 приведен 3-х мерный график суммарного

Рис. 3. 3-х мерное изображение зависимости суммарного заряда Q_{Σ} от координат поглощения кванта (x_0, y_0) (фрагмент).

сигнала Q_{Σ} от координат (x_0, y_0) . При фиксированном *x*₀ максимальный сигнал образуется при поглощении фотона в центре полосы $(y_0 = b/2)$. На рис. 4 приведены расчетные зависимости Q_{Σ} от координаты х₀ для различных значений g. Кривая 1 соответствует макраевым потерям лым (g = 0.01)практически И совпадает c одномерным случаем. Увеличение параметра д приводит к уменьшению и к размытию Q_l, Q_r .

и Q_{Σ} , которые отображаются областями значений (области 2 и 3). На вставке рис. 4 часть области 3 приведена в увеличенном масштабе. Зависимость Q_{Σ} от у₀ изображается вертикальными отрезками.

Рис.4. Зависимость суммарного заряда Q_{Σ} от координаты поглощения кванта x_0 . Расчеты выполнены при a/b = 5, $N_0 = 10^3$, h = 50.1) g = 0, R = 0; 2) g = 0.04, R = 0; 3) g = 0.1, R = 0; 4) g = 0.002, $R = 10^4$, $a_0 = 0.03a$; 5) g = 0.002, $R - 2 \cdot 10^4$, $a_0 = 0.03a$.

Учет рекомбинационных потерь

Для учета рекомбинационных потерь решение уравнения (1) и расчет собираемых зарядов Q_i и Q_r проводились численными методами. Начальное распределение квазичастиц задавалось гауссовой функцией:

$$u(x, y, 0) = \frac{N_0}{2\pi a_0 a b} \exp\left(\frac{-(x - x_0)^2 - (y - y_0)^2}{2a_0^2}\right)$$
(14)

где *a*⁰ – радиус начального распределения квазичастиц. Отметим, что распределенный источник квазичастиц необходим для правильного учета рекомбинационных потерь.

В расчетах использовались сеточные методы [9]. Дифференциальные операторы заменялись разностными. Использовалась согласованная сетка

по оси *x* с шагом h_x и по оси *y* с шагом h_y , сетка по переменной *t* с шагом τ . Оператор Лапласа аппроксимировался на пятиточечном шаблоне. Производные по пространственным переменным в точке заменялись второй разностной производной, а производная по времени – первой. Для нахождения решения на следующем слое использовалась явная схема. В результате получались разностные уравнения для сеточных функций u_{ij}^{k+1} . Разностные выражения имели точность аппроксимации $O(\tau + h_x^2 + h_y^2)$. Детальные выражения для разностных уравнений и граничных условий приведены в работе [10].

Выражения (5)-(6) для собираемых зарядов имели вид

$$Q_{l} = D\tau \sum_{k=1}^{K} \sum_{j=1}^{n-1} \left(u_{1j}^{k} - u_{0j}^{k} \right) h_{x} h_{y}, \quad Q_{r} = D\tau \sum_{k=1}^{K} \sum_{j=1}^{n-1} \left(u_{n-1j}^{k} - u_{nj}^{k} \right) h_{x} h_{y}. \quad (15)$$

Рис. 5. Диаграмма Q_l, Q_r для a/b = 5, $\alpha = 1, N_0 = 10^3$: 1) $\mathcal{E} = 0, g = 0$; 2) $\mathcal{E} = 0.02, g = 0.01$; 3) $\mathcal{E} = 0.02, g = 0.1$; 4) $\mathcal{E} = 0.1, g = 0.1$. Прямая 5 – значения (Q_l, Q_r), полученные при поглощении фотонов разных энергий в точках с определенным значением x_0 .

Выбор шага по времени τ проводился из условия

$$\max\left(\frac{D\tau}{h_x^2}, \frac{D\tau}{h_y^2}\right) < \frac{1}{4}.$$
 (16)

Оно обеспечивает сходимость итерационного процесса для линейных уравнений [9]. Тем более это условие обеспечит сходимость итераций для нелинейного уравнения (1). Поскольку квазичастицы в начальные моменты времени локализованы в малой области $a_0 << a$, то величины h_x и h_y выбирались достаточно малыми ($<< a_0$). Для выполнения неравенства (16) при больших значениях D требовались малые интервалы τ . Соответственно, задача требовала длительного счета. Для сокращения затрат времени шаг по пространству и времени изменялся в процессе счета. На первом этапе расчеты велись с мелкими шагами τ, h_x, h_y , затем, когда пространственное распределение квазичастиц становилось более гладким, шаги τ, h_x, h_y увеличивались. Выполнение соотношения (16) обеспечивалось на всех этапах счета.

Расчеты сигналов стрипового СТП-детектора были выполнены для различных значений константы рекомбинации R, граничных параметров g и h. Отметим, что для случая нулевой рекомбинации (R = 0) было проведено сравнения численных расчетов и расчетов по аналитическим выражениям. Сравнение показало, что численные расчеты воспроизводят данные аналитических методов с точностью не хуже 0.2 %.

В целом, влияние собственной рекомбинации неравновесных квазичастиц на сигналы детектора аналогично влиянию граничных потерь. Учет рекомбинации приводит к зависимости сигнала от координаты y_0 и к уменьшению сигналов Q_l , Q_r и Q_{Σ} . На рис. 4 приведены расчетные сигналы Q_{Σ} от координаты x_0 для 2-х значений константы рекомбинации R (области 4 и 5). Из рисунка видно, что рекомбинация сдвигает $Q_{\Sigma}(x_0)$ вниз и усиливает прогиб в центре полосы. С ростом R уширение областей 4 и 5 усиливается.

Форма спектральной линии

Изложим основную идею стриповых детекторов. При облучении идеальной полоски ($\alpha = 0, \varepsilon = 0, g = 0$) моноэнергетическими фотонами с энергией E_0 имеем выражения $Q_l(x_0) = N_0(1 - x_0/a), Q_r(x_0) = N_0x_0/a$, которые следуют из (12). Видно что

$$Q_{l}(x_{0}) + Q_{r}(x_{0}) = N_{0}.$$
(17)

На диаграмме Q_l, Q_r формула (17) определяет отрезок прямой линии, проходящий через точки $(0, N_0)$ и $(N_{0,0})$. Прямая линия, проведенная из начала координат и пересекающая построенный отрезок, даёт набор (Q_l, Q_r) в точке x_0 . Наборы (Q_l, Q_r) в точке x_0 , соответствующие другим энергиям, будут располагаться на этой прямой.

Выполним постепенный переход к реальным детекторам. Учтем объемные потери квазичастиц в полоске $\alpha \neq 0$ ($\varepsilon = 0, g = 0$). Результаты счета можно представить кривой 1 (рис. 5), которая симметрична относительно биссектрисы прямого угла и своими концами упирается в точки $(0, N_0)$ и $(N_0, 0)$. При учете эффективности туннельных переходов $\varepsilon \neq 0, (\alpha \neq 0, g = 0)$, расчеты дадут кривую 2, которая своими концами уже не доходит в точки $(0, N_0)$ и $(N_0, 0)$. Во всех этих случаях результаты счета не зависят от y_0 . Если в потоке излучения, падающего на полоску, присутствуют фотоны разных энергий $E_i, i = \overline{1,k}$, то на диаграмме Q_i, Q_r будут присутствовать k «параллельных» кривых. Следовательно, каждой точке (Q_i, Q_r) на диаграмме можно сопоставить определенное значение энергии E и таким образом откалибровать плоскость по энергии.

Учет потерь на боковой границе $g \neq 0$, $\alpha \neq 0, \varepsilon \neq 0$ превращает набор $\{Q_i, Q_r\}$ в некую область вследствие появляющейся зависимости элементов от координаты У₀ (кривые 3 и 4 на рис. 5). Коэффициент рекомбинации *R* дополнительно изменяет величины элементов набора. Все элементы набора $\{Q_l, Q_r\}$ отвечают энергии E_0 , но изображенные на калиброванной диаграмме Q_l, Q_r они будут располагаться в точках с различными значениями Е. В результате такого подхода получим распределение фотонов по энергии Е. В реальном детекторе каждый элемент (Q_l, Q_r) фиксируется с погрешностями, определяемыми характеристиками регистрирующей аппаратуры. Положим, что погрешности измерений одинаковы и равны $\Delta Q_{t} = \Delta Q_{r} = \Delta Q$. Тогда оценка величины E по измеренным значениям (Q_l, Q_r) будет содержать ошибку ΔE . Величина ошибки будет зависить от координат и определяться выражением

$$\Delta E(x_0, y_0) = \left| \frac{\partial E(Q_l, Q_r)}{\partial Q_l} \right| \Delta Q + \left| \frac{\partial E(Q_l, Q_r)}{\partial Q_r} \right| \Delta Q.$$
(18)

Расчеты показывают, что $\Delta E(x_0, y_0)$ принимает минимальные значения при постоянном y_0 в точке $x_0 = a/2$.

Если учесть, что интенсивность падающего излучения по энергии представляет случайную величину, распределенную по нормальному закону $N(E,\sigma)$, спектральную линию детектора можно записать в виде

$$s(E) = \frac{1}{2\pi \cdot ab} \int_{0}^{a} \int_{0}^{b} \frac{dx_0 dy_0}{\sigma(x_0, y_0)} \exp\left\{\frac{(E - E(x_0, y_0))^2}{2\sigma^2(x_0, y_0)}\right\},$$
(19)

где интеграл берется по площади полоски. Принято, что стандарт отклонения σ равен погрешности ΔE .

На рис. 6 приведены спектральные линии стриповых СТПдетекторов, рассчитанные с помощью выражения (19). При отсутствии зависимости сигнала от координаты y_0 (g = 0, R = 0) спектральная линия имеет форму близкую к гауссовой (кривая 1). При $g \neq 0$ или $R \neq 0$ спектральная линия приобретает асимметричную форму с характерным уступом в сторону малых энергий (кривые 2-5). В случае рекомбинационных потерь уширение линии увеличивается вместе с R

Рис.6. Форма спектральной линии стриповых СТП-детекторов при a/b = 5, $N_0 = 10^3$, $\alpha = 1$.

(кривые 4-5). Уширение спектральной линии возрастает при уменьшении начального радиуса a_0 и увеличении ширины полосы b (кривые 4-5). Можно сделать вывод, что краевые потери И рекомбинация квазичастиц вызывают искажение формы спектральной линии, и, следовательно, ухудшают энергетическое разрешение СТП-детекторов.

Литература

1. Friedrich S. Superconducting tunnel junction photon detectors: theory and application // J.Low Temp.Phys. 2008, Vol. 151, P. 277-286.

- 2. Verhoeve P., Martin D.D.E., Hijmering R.A., Verveer J., van Dordrecht A., Sirbi G., Oosterbroek T., Peacock A. S-Cam 3: Optical astronomy with a STJ-based imaging spectrophotometer // NIM Phys. Res. A 2006, Vol. 559, P. 598.
- 3. Андрианов В.А., Горьков В.П., Кошелец В.П., Филиппенко Л. В. Сверхпроводящие туннельные детекторы рентгеновского излучения. Вопросы энергетического разрешения // Физика и техника полупроводников. 2007, Т. 41, № 2, с.221-228.
- 4. Kraus H, v. Feilitzsch F., Jochum J., Mossbauer R.L., Peterreins Th., Probst F. Quasiparticle trapping in a superconductive detector system exhibiting high energy and position resolution // Phys. Let. B 1989,Vol.231, P.195-202.
- Hijmering R. A., Verhoeve P., Martin D. D. E., Peacock A., Kozorezov A. G., Venn R. Imaging spectroscopy with Ta/Al DROIDs: Performance for different absorber lengths //NIM Phys. Res. A 2006, Vol. 559, P. 692–694.
- 6. Jochum J., Kraus H., Gutsche M., Kemmather B., von Feilitzsch F. and Mossbauer P.L. Dynamics of radiation induced quasiparticles in superconducting tunnel junction detectors //Annalen der Physik, 1993, Vol. 2, P. 611-634.
- 7. Ejrnaes M., Nappi C., Cristiano R. Dynamics of nonequilibrium quasiparticles in a double superconducting tunnel junction detector// Supercond. Sci. Technol. 2005, 18, P. 953–960.
- 8. Тихонов А.Н., Самарский А.А. Методы математической физики. М.: Наука, 1972.
- 9. Самарский А.А., Андреев В.Б. Разностные методы для эллиптических уравнений. М.: Наука, 1976.
- Андрианов В.А., Горьков В.П. Диффузионная модель детекторов на основе сверхпроводящих переходов.// Прикладная математика и информатика №19:Сб.// Под ред. Д.П. Костомарова, В.И. Дмитриева – М.: МАКС Пресс, 2004, С. 5-20.