
Кафедра ИБ 

Вопросы к государственному экзамену 

Магистерская программа 

«Искусственный интеллект в кибербезопасности» (гр. 292кб) 
 

1. Задача выполнимости булевых формул (SAT), её сложность. Примеры сведения задач с помощью SMT 

решателя. Способы решения задачи - решение задачи методом грубой силы, Conflict-Driven Clause 

Learning алгоритм. 

2. Задача выполнимости формулы в теориях (SMT). Примеры сведения задач с помощью SMT решателя. 

Davis–Putnam–Logemann–Loveland(Theory)-фреймворк. Примеры теорий: теория равенства, теория 

неинтерпретируемых функций. Их разрешаюшие процедуры.  

3. Нетипизированное лямбда исчисление: использование аппликации и абстракции для построения 

термов, бета-редукция, теорема Чёрча-Россера. Y-комбинатор неподвижной точки. Разрешимость задач 

обитаемости типа, синтеза терма и проверки типа в нетипизированном лямбда исчислении. 

4. Просто типизированное лямбда исчисление. Способы расширения просто типизированного лямбда 

исчисления в лямбда-кубе: термы, зависимые от термов и типов, типы, зависимые от типов и термов. 

Соответствие Карри-Ховарда между лямбда исчислениями, теорией множеств и логикой. Типы 

произведения и суммы, их выражение в логике, а также в языках программирования. 

5. Интерпретация нейронных сетей, основные понятия. Классификация методов интерпретации. Методы 

построения карт значимости и карт активаций классов.  

6. Интерпретация нейронных сетей, основные понятия. Методы интерпретации не зависящие от модели 

(агностические). Метод значений Шейпли. Метод LIME. 

7. Интерпретируемые модели машинного обучения.  

8. Методы интерпретации не зависящие от модели (агностические). PDP, ICE, ALE, feature importance. 

9. Вероятностное пространство. Аксиоматика Колмогорова. Вероятностная мера. Функция распределения 

вероятностной меры. Понятие случайной величины. Геометрическое понимание случайной величины. 

Распределение вероятностей и функция распределения.  

10. Функция распределения. Плотность распределения. Типы распределения: равномерное, биномиальное, 

Пуассона, нормальное, экспоненциальное.  

11. Условная вероятность и независимость событий. Теорема Байеса. Условные распределения.  

12. Математическое ожидание случайной величины. Дисперсия случайной величины. Ковариация 

случайных величин. Неравенство Коши-Буняковского. Матрица ковариаций вектора случайных 

величин. Дисперсия суммы независимых случайных величин.  

13. Понятие выборки и генеральной совокупности. Доверительный интервал. Метод максимального 

правдоподобия. EM-алгоритмы. 

14. Теория информации. Энтропия по Шеннону. Энтропия объединения. Условная энтропия. 

Математические свойства энтропии по Шеннону.  

15. Нейронные сети. Модель нейрона. MLP. Понятие функции активации. Алгоритм обратного 

распространения ошибки. 

16. Глубокие нейронные сети. Принцип работы слоев: сверточного, полносвязного, пулинг (max pooling, 

average pooling), нормализации (batch normalization, layer normalization), дропаут. 

17. Сверточные нейронные сети. Семейства архитектур: LeNet, AlexNet, VGG, Inception, ResNet, DenseNet, 

EfficientNet.  

18. Рекуррентные нейронные сети. Архитектуры RNN, GRU, LSTM. Затухание градиента, взрыв градиента. 

Градиентный клиппинг. 

19. Механизм внимания. Self-Attention, Multi-head-attention. Маскированное внимание. Архитектура 

трансформер и использование механизма внимания в ней. Современные языковые модели: 

двунаправленные энкодеры (BERT), генеративные трансформеры (GPT). 

20. Генеративные модели в компьютерном зрении (генеративно-состязательные нейронные сети). Принцип 

работы генератора и дискриминатора. 

21. Нейросетевые модели для работы со звуком. Задача распознавания речи. Задача преобразования речи в 

текст. Модели Tacatron, Wave2Vec. CTC-loss. 

22. Обучение с подкреплением. Основные элементы: среда, агент, функция награды, действия. Монте-

Карло, Temporal difference. Проблема исследования и эксплуатации (exporation&expoitation). Алгоритм 

DQN. 

23. Концепция атаки уклонением на нейросетевые модели. Существующие атаки уклонением в разных 

моделях угроз: белый ящик, черный ящик, атаки в реальном мире. 

24. Методы  защиты моделей от атак уклонением. Состязательное обучение. Сертификационные методы. 



25. Концепция атаки отравлением данных на нейросетевые модели. Существующие атаки отравлением 

данных и методы защиты моделей от атак данного типа. 

26. Концепция атак извлечением. Существующие атаки извлечением и методы защиты моделей от атак 

данного типа. Методы атак на основе запросов. Дифференциальные атаки.  

27. Методы оценки устойчивости моделей машинного обучения к внешним воздействиям. 

28. Мониторинг в системах с элементами ТИИ. 

29. Публичные облачные провайдеры. Основные концепции и модели. Особенности обеспечения 

безопасности инфраструктуры, размещенной в облаке. 

30. Концептуальная архитектура систем контейнеризации. Механизмы изоляции ядра Linux, необходимые 

для построения систем контейнеризации. 

31. Концептуальная архитектура систем оркестрации контейнеров на примере Kubernetes. Принципы 

обеспечения безопасности Kubernetes-инфраструктуры.  
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