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Kadenpa Ub
Bonpocs! k rocy1apcTBeHHOMY 3K3aMeHy
Marucrepckasi nporpamma
«UcKkyccTBeHHBIH HHTE/UIEKT B Kubepoe3onacHocTn» (rp. 292k0)

3agaua BEIIOTHUMOCTH OyneBbix Gopmyn (SAT), e€ cioxkHocTh. [Ipumeps! cBenenns 3aaad ¢ nomouipio SMT
penrarensi. CrocoObl pelieHns 3a1a4uu - peleHue 3a1a4u MeTogoM rpyooii cuel, Conflict-Driven Clause
Learning anropurm.

3agaua BeIoTHUMOCTH (opMyinbl B Teopusix (SMT). Ilpumeps! cBenenus 3anay ¢ nomoupio SMT pemarerns.
Davis—Putham-Logemann-Loveland(Theory)-dpeiimBopk. IIpumepsl TeOpHii: TEOPHs PaBEHCTBA, TEOPHUSI
HEHHTEepIpeTUpyeMbIX GyHKIui. VX pa3pelnaromye npoueaypsl.

HerunuzupoBanHoe i1siM0/1a MCUUCIICHNE: UCTIOIb30BaHNE alIUIMKAIIMK M a0CTPaKLIUK 11 TOCTPOCHUS
TepMOB, OeTa-peayknus, Teopema Uépua-Poccepa. Y-KoMOMHATOP HEMOABMKHOHN TOUKH. PaspemmmMocTs 3amaa
00MTaeMOCTH TUIIA, CHHTE3a TEpPMa U IPOBEPKH TUIIA B HETUIIM3UPOBAHHOM JIIMO/Ia NCUUCIICHUH.

[Tpocto Tunu3upoBaHHoe NsMOAa ncuucienne. CrocoObl pacuIMpeHns: IPOCTO THIIM3UPOBAHHOTO JISIMO1a
MCUHUCIICHHS B JIAMO1a-KyOe: TepMbl, 3aBUCUMBIC OT TEPMOB U TUIIOB, TUIIBI, 3aBUCUMBIE OT TUIIOB U TEPMOB.
CootBerctBue Kappu-Xosapaa Mexay J1siM01a HCYUCIEHISIME, TEOPHEH MHOXKECTB W JIOTHKOU. THIIbI
TIPOU3BEJICHUS U CYyMMBI, X BBIPa)KEHHUE B JIOTHKE, a TAKXKe B A3BIKAX MPOTrPaMMUPOBAHUSI.

WuTepriperaiiust HBMPOHHBIX CeTel, OCHOBHBIE MOHATHS. Kiaccudukanst MeTo/1I0B HHTEPIIPETaii. MeTo bl
MIOCTPOCHUS KapT 3HAYMMOCTH M KapT aKTUBALIMI KJIACCOB.

WHTepnperanns HEUPOHHBIX CETEW, OCHOBHBIE NOHATHUSL. METOAbl MHTEPIPETALMU HE 3aBUCAILUE OT MOACIIN
(armoctryeckue). Merox 3Hauenwmid Llleimm. Meton LIME.

WnTtepnpeTrnpyeMble MOJEIN MAIIMHHOTO O0Y4YEHUSL.

Mertoapl HHTEpIIPETAIIMH He 3aBUCsInne oT Moaenu (arnoctuueckue). PDP, ICE, ALE, feature importance.
BepositHocTHOE IpocTpancTBO. AkcromaTrka Kommoroposa. BepostHocTHas Mepa. OyHKIHS pacipeaeneHus
BEPOATHOCTHOU Mepbl. [IoHATHE cydaitHOM BeM4YUHBL. ['eoMeTpuyeckoe MOHMMAaHUE CIIy4YalHOM BEJIMYMHBI.
Pacnpenenenue BeposTHOCTEH U GYHKIIUS pacripeesiCHHSI.

Oynkuus pacnpenenenus. [InoTHocTs pacnpenenenus. TUIBI pacripeesieHus: paBHOMEpHOE, OMHOMHUAIILHOE,
ITyaccona, HopManbHOE, SKCIIOHEHIIUAIBHOE.

YciioBHAsE BEPOSITHOCT M HE3aBUCUMOCTh coObITHi. Teopema baiieca. Y cioBHbIE pacnipeesieHus.
Marematuueckoe OKUJaHue CIy4ailHON BenuuuHbl. J(ucnepcus cinyyaitHoil BennuuHbl. KoBapuanus
ciyvaiinbix BennuuH. HepasenctBo Komm-byHnsikoBckoro. Matpuiia koBapuraiiuii BeKTopa CiydaifHbIX
BeNWYMH. J{ucniepcusi cyMMbl HE3aBUCHMBIX CITyYalHBIX BEJTHYHH.

IToHsTHE BEIOOPKH M T€HEpaJIbHONW COBOKYIHOCTH. JloBepuTenbHbINH HHTEpBaL. MeTo MakCUMallbHOTO
npaponoaoous. EM-ajaroputmesi.

Teopust uadopmannu. Dutponus no llenHony. SuTponus oObenuHEHNs. Y CIIOBHAS SHTPOIHS.
Maremaruueckue cBoiicTBa sHTponuu 1o lllenHony.

Heiiponnsie cetn. Moaens Heiipona. MLP. [TonsiTue GpyHKIMH aKTHBalMU. AJITOPUTM 0OpaTHOTO
pacrpocTpaHeHus! OINOKH.

I'my6okue neripoHusle ceTd. [IpuHIMT pabOTHI CII0EB: CBEPTOYHOTO, MOTHOCBI3HOIO, MyIUHT (max pooling,
average pooling), Hopmanu3aiuu (batch normalization, layer normalization), gponayT.

Caeprounsble HelipoHHble ceTu. CemelicTa apxurekTyp: LeNet, AlexNet, VGG, Inception, ResNet, DenseNet,
EfficientNet.

PexyppenTHsie Heliponnbie ceti. ApxuTekTypsl RNN, GRU, LSTM. 3artyxanue rpaanenTa, B3pbIB IpaueHTa.
I'panyieHTHBIN KIUNIKAT.

Mexanusm Banmanus. Self-Attention, Multi-head-attention. MackupoBanHOe BHUMaHHE. APXHUTEKTYpa
TpaHchOpMep U UCTIONB30BaHUE MEXaHU3Ma BHUMaHUs B Hell. COBpEMEHHBIE S3bIKOBBIE MOJCIIH:
nByHanpasieHHble sHKoiepsl (BERT), renepatusnsie Tpancopmepst (GPT).

I'enepaTuBHBIE MOZIENTH B KOMITBIOTEPHOM 3pEHHH (T€HEPaTUBHO-COCTA3aTENbHBIE HEHPOHHBIE ceTH). [ IpuHImm
paboThI TeHepaTopa U TUCKPUMHHATOPA.

HeiipocereBsie Mozenu asst pabOTHI CO 3ByKOM. 3a/iaua pacro3HaBaHMs pedd. 3a1aqa IpeoOpa3oBaHusl peur B
tekcT. Moaenu Tacatron, Wave2Vec. CTC-loss.

Oobyuenue c noakpemieareM. OCHOBHBIE 3JIEMEHTHI: Cpelia, areHT, GyHKUUI Harpaisl, AeicTBus. MoHnTe-
Kapino, Temporal difference. [IpoGiema nccnenoBanus u sKcIuTyaTanuu (exporation&expoitation). AIroputm
DQN.

Konuenmus araku ykIIoHEHHEM Ha HelpoceTeBble MoJenu. CyIECTBYIOLINE aTaki YKIIOHEHHEM B pa3HbIX
MOJEISX yrpo3: Oenblii MUK, YePHBIN SIIUK, aTaKH B PEaJIbHOM MHUDE.

Mertoap! 3amuThl MOAeIel oT aTtak ykioHeHueM. Coctsa3aTenbHoe o0yuenne. CepTuUKaImOHHBIE METOTEI.



25. KoHrermnims aTaku OTpaBICHHEM JaHHbBIX Ha HelipoceTeBbie Moseiu. CyIIeCTBYIONIME aTaKi OTPABICHUEM
JAHHBIX ¥ METOBI 3aIIUTHI MOJIETIEH OT aTak JAaHHOTO THIIA.

26. Konuemnuust arak u3siedcHreM. CyIIeCTBYIOIINE aTAKH M3BJICUYCHUEM M METOIbI 3alIIUTHI MOJICNICH OT aTaK
JAaHHOTO THMa. MeToab!I aTak Ha OCHOBE 3ammpocoB. Jnddhepennnanpaple aTaky.

27. Merobl OIIEHKH YCTOWYUBOCTH MOJIENIEH MAIIHHHOTO O0YUYEHHS K BHEITHUM BO3ICHCTBHSAM.

28. MouuTOpPHUHT B cucTeMax ¢ snemMentamu THUN.

29. IlyGnmunsie obmaunble mpoBaiiaepbl. OCHOBHBIE KOHIEMIUH 1 Mo e, OCOOEHHOCTH 00ecTeueHHs
Oe3onmacHOCcTH HHGPACTPYKTYPHI, pa3MeIIeHHOH B 00nake.

30. KouuenTyansHast apXUTEKTypa CUCTEM KOHTEHepu3aui. MexaHu3mbl U30JIs1uu siapa Linux, Heo6XoauMsle
JUTSI TIOCTPOCHUS CUCTEM KOHTEHHEPH3AIIHH.

31. KonuenTyansHas apXUTEKTypa CHCTEM OPKECTpaliu KoHTeliHepoB Ha npumepe Kubernetes. [punimmb:
obecnievenus 6e3omacHocTH Kubernetes-nappacTpyKkTyphl.
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