В.А. Исаков

ПРИМЕНЕНИЕ КВАЗИАКУСТИЧЕСКОЙ СХЕМЫ ДЛЯ РЕШЕНИЯ УРАВНЕНИЙ МЕЛКОЙ ВОДЫ НАД НЕРОВНЫМ ДНОМ

Введение

Уравнения мелкой воды - это система уравнений гиперболического типа, которая описывает течение несжимаемой жидкости в областях, горизонтальные размеры которых преобладают над глубиной, и находит широкое применение при расчёте течений в реках, озерах, морях, приливных течений и отливов, моделировании набегания волн цунами на береговую линию; используются в задачах расчёта прогноза погоды и т.д.

Наиболее распространнеными методами численного решения системы уравнений являются конечно-разностные методы[1], методы конечного объема [2,3,4,5,6], а также методы конечных элементов [7,8,9]. Каждый из указанных методов имеет свои достоинства и недостатки, и, как следствие, разные области применимости.

Квазиакустическую схему можно отнести к классу MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) схем [10]. В классических MUSCL схемах применяется кусочно-линейная реконструкция численного решения в пределах расчетной ячейки. Для вычисления потока через границу ячейки, как правило, используется решение задачи Римана. При таком подходе получается схема второго порядка, в которой возможно появление осцилляций в окрестности разрывных решений. Одним из возможных способов обеспечения монотонности численного решения является применение лимитерных функций, ограничивающих угол наклона линейных функций в пределах расчетной ячейки.

В отличие от классических MUSCL схем в квазиакустической схеме для вычисления потока через границу расчетной ячейки применяется разбиение локально-линейной реконструкции решения на горизонтальные слои малых возмущений, каждый из которых перемещается со своей характеристической скоростью по своему фону в соответствии с решением линеаризованной системы уравнений при этом без использования лимитерных функций. Схема хорошо зарекомендовала себя при численном решении уравнений газовой динамики[11,12,13]. В работе рассматривается применение квазиакустической схемы к численному решению уравнений мелкой воды над неровным дном.

1. Постановка задачи

Система одномерных уравнений мелкой воды над неровным дном, выражающих законы сохранеия массы и импульса в прямоугольной области $\Omega = [X_L, X_R] \times [0, T]$ принимает вид:

$$\begin{cases} \frac{\partial H}{\partial t} + \frac{\partial \left((H-b)u \right)}{\partial x} = 0 \\ \frac{\partial I}{\partial t} + \frac{\partial}{\partial x} \left((H-b)u^2 + \frac{1}{2}g(H-b)^2 \right) = -g(H-b)\frac{\partial b}{\partial x} \end{cases}$$
(0.1)

где x – пространственная координата; t – время; H(x,t) – высота уровня жидкости; u(x,t) – усредненная по глубине горизонтальная составляющая вектора скорости; I = (H-b)u – импульс жидкости; b(x) – функция, задающая рельеф дна; g = 9.81 – ускорение свободного падения (рис. 1).

Рис. 1

Для определенности рассмотрим начально-краевую задачу в области Ω. В начальный момент времени зададим распределения функций высоты уровня жидкости *H* и скорости *u*:

$$H(x,0) = H^{(0)}(x), u(x,0) = u^{(0)}(x), x \in [X_L, X_R]$$

Не ограничивая общности, будем считать, что на левую и правую границы области Ω приходит по две характеристики, причем каждая из них, независимо от другой, может приходить как с внутренней, так и с внешней стороны границы[14].

2. Линеаризованная система уравнений мелкой воды над неровным дном

Для построения квазиакустичсекой схемы наряду с системой (0.1) используется также линеаризованная система уравнений мелкой воды над неровным дном:

$$\begin{cases} \frac{\partial(\delta H)}{\partial t} + \overline{u} \frac{\partial(\delta H)}{\partial x} + (\overline{H} - \overline{b}) \frac{\partial(\delta u)}{\partial x} = 0\\ \frac{\partial(\delta u)}{\partial t} + g \frac{\partial(\delta H)}{\partial x} + \overline{u} \frac{\partial(\delta u)}{\partial x} = 0 \end{cases}$$
(0.2)

где $\overline{H}, \overline{u}$ – фоновые значения высоты уровня жидкости и скорости в невозмущенной среде; $\delta H(x,t), \delta u(x,t)$ – малые возмущения, распространяющиеся по \overline{H} и \overline{u} соответственно; \overline{b} – постоянное значение функции рельефа дна.

Решение линеаризованной системы (0.2), соответствующее возмущениям $\delta H^{(0)}(x)$ и $\delta u^{(0)}(x)$ в начальный момент времени, принимает вид:

$$\begin{cases} \delta H(x,t) = \frac{\overline{c}}{2g} \left[\left\{ \delta u^{(0)}(\xi^{+}) + \frac{g}{\overline{c}} \delta H^{(0)}(\xi^{+}) \right\} - \left\{ \delta u^{(0)}(\xi^{-}) - \frac{g}{\overline{c}} \delta H^{(0)}(\xi^{-}) \right\} \right] \\ \delta u(x,t) = \frac{1}{2} \left[\left\{ \delta u^{(0)}(\xi^{+}) + \frac{g}{\overline{c}} \delta H^{(0)}(\xi^{+}) \right\} + \left\{ \delta u^{(0)}(\xi^{-}) - \frac{g}{\overline{c}} \delta H^{(0)}(\xi^{-}) \right\} \right] \end{cases}$$

где $\xi^+ = x - \lambda^+ t$, $\xi^- = x - \lambda^- t$ – уравнения характеристик линеаризованной системы уравнений (0.2); $\lambda^+ = \overline{u} + \overline{c}$, $\lambda^- = \overline{u} - \overline{c}$ – собственные значения матрицы системы (0.2); $\overline{c} = \sqrt{g(\overline{H} - \overline{b})}$ – скорость распространения малых возмущений по жидкости.

3. Дискретизация задачи

Определим в области Ω ортогональную расчётную сетку ω

$$\omega = \omega_{\Delta x} \times \omega_{\tau_{u}}$$

где $\omega_{\Delta x} = \{x_k : x_{k+1} = x_k + \Delta x, k = \overline{0, N-1}, x_0 = X_L, x_N = X_R\}$ – равномерная с шагом Δx сетка по координатному направлению x; $\omega_{\tau_n} = \{t_n : t_{n+1} = t_n + \tau_n, n = \overline{0, K-1}, t_K = T\}$ – неравномерная сетка по времени.

В центрах пространственных ячеек $\Omega_k = [x_{k-1}, x_k]$ определим сеточные переменные высоты уровня жидкости H, скорости u, импульса I. Назовем их консервативными переменными и обозначим через $H_{k-1/2}^n, I_{k-1/2}^n, U_{k-1/2}^n$ (см. рис. 2).

Рис. 2. Пространственно-временная ячейка Ω_k^n . Под величинами

$$H_{k-1/2}^{n} = \langle H \rangle_{k-1/2}^{n} = \frac{1}{\Delta x} \int_{x_{k-1}}^{x_{k}} H(x,t_{n}) dx$$

$$I_{k-1/2}^{n} = \langle I \rangle_{k-1/2}^{n} = \frac{1}{\Delta x} \int_{x_{k-1}}^{x_{k}} (H(x,t_{n}) - b(x)) u(x,t_{n}) dx \qquad (0.3)$$

$$U_{k-1/2}^{n} = \langle U \rangle_{k-1/2}^{n} = \frac{1}{H_{k-1/2}^{n} \Delta x} \int_{x_{k-1}}^{x_{k}} (H(x,t_{n}) - b(x)) u(x,t_{n}) dx$$

будем понимать средние по ячейке Ω_k значения функций на момент времени $t = t_n$.

Функцию b(x) определим в узлах сетки $\omega_{\Delta x}$ значениями b_k .

4. Построение квазиакустической схемы

Построение схемы проводится интегро-интерполяционным методом[15]. Проинтегрировав систему уравнений (0.1) по пространственно-временной ячейке $\Omega_k^n = [x_{k-1}, x_k] \times [t_n, t_n + \tau_n]$, получаем балансные соотношения массы и импульса:

$$\left(H_{k-1/2}^{n+1} - H_{k-1/2}^{n} \right) \Delta x + \left[IFM_{k}^{n} - IFM_{k-1}^{n} \right] = 0$$

$$\left(I_{k-1/2}^{n+1} - I_{k-1/2}^{n} \right) \Delta x + \left[IFI_{k}^{n} - IFI_{k-1}^{n} \right] = - \int_{t_{n}}^{t_{n}+\tau_{n}} \int_{x_{k-1}}^{x_{k}} \left\{ g\left(H - b \right) \frac{\partial b}{\partial x} \right\} dx dt$$

$$(0.4)$$

Величины

$$IFM_{k+\delta}^{n} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \left(H\left(x_{k+\delta},t\right) - b_{k+\delta} \right) u\left(x_{k+\delta},t\right) \right\} dt$$
$$IFI_{k+\delta}^{n} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \left(H\left(x_{k+\delta},t\right) - b_{k+\delta} \right) u^{2}\left(x_{k+\delta},t\right) + \frac{1}{2}gH^{2}\left(x_{k-1},t\right) \right\} dt, \delta = \{-1,0\}$$

суть интегральные за время τ_n потоки массы и импульса через левую $x = x_{k-1}$ и правую $x = x_k$ границы ячейки Ω_k соответственно.

Правую часть балансного соотношения импульса (0.4) аппроксимируем в центре пространственно-временной ячейки Ω_k^n :

$$\int_{t_n}^{t_n+\tau_n} \int_{x_{k-1}}^{x_k} \left\{ -g(H-b)\frac{\partial b}{\partial x} \right\} dx dt \approx -g\left(\frac{H_{k-1/2}^n + H_{k-1/2}^{n+1}}{2} - b_{k-1/2}\right) \frac{(b_k - b_{k-1})}{\Delta x} \Delta x \tau_n ,$$

где $b_{k-1/2} = 0.5 * (b_{k-1} + b_k)$ – значение функции рельефа дна в центре ячейки Ω_k .

Принимая во внимание соотношения (0.3), построение квазиакустической схемы сводится к аппроксимации интегральных потоков.

5. Аппроксимация интегральных потоков

Процесс аппроксимации интегральных за время τ_n потоков состоит из следующих этапов.

5.1. Локально-линейная реконструкция функций Н и и

В пределах каждой расчетной ячейки Ω_k приблизим сеточные функции высоты уровня жидкости *H* и скорости *u* на момент времени $t = t_n$ линейными функциями (см. рис. 3) [11]:

$$\Psi(x; x_{k-1/2}, t_n) \simeq \Psi_{k-1/2}^n + (x - x_{k-1/2}) D \Psi_k^n$$
,

Величина $D\Psi_k^n$ задает угол наклона линейной реконструкции и вычисляется по формуле:

$$D\Psi_k^n = \frac{\left|\Psi_{\overline{x},k}^n\right|}{\left|\Psi_{\overline{x},k}^n\right| + \left|\Psi_{x,k}^n\right|}\Psi_{x,k}^n + \frac{\left|\Psi_{x,k}^n\right|}{\left|\Psi_{\overline{x},k}^n\right| + \left|\Psi_{x,k}^n\right|}\Psi_{\overline{x},k}^n$$

где

$$\Psi_{\bar{x},k}^{n} = \frac{\Psi_{k-1/2}^{n} - \Psi_{k-3/2}^{n}}{\Delta x}, \quad \Psi_{x,k}^{n} = \frac{\Psi_{k+1/2}^{n} - \Psi_{k-1/2}^{n}}{\Delta x}$$

Указанный способ вычисления величины $D\Psi_k^n$ позволяет сохранить монотонность линейной функции на соответствующих участках монотонности сеточной функции $\Psi_{k-1/2}^n$ [16].

5.2. Разбиение линейной реконструкции на горизонтальные слои

Для функций высоты уровня жидкости и скорости выделим на каждом отрезке $[x_{k-1/2}, x_{k+1/2}]$, общем для соседних ячеек Ω_k и Ω_{k+1} , горизонтальное сечение, значение которого определяется как полусумма значений соответствующих линейных функций в узле $x = x_k$. Такое сечение назовем *общим постоянным фоном* и обозначим через $\overline{\Psi}_k$.

Далее на каждом полуотрезке $[x_{k-1/2}, x_k]$ и $[x_k, x_{k+1/2}]$ проведем разбиение линейных реконструкций функций H и u между фоном и наиболее удаленной от него точкой на совокупность горизонтальных слоев, параллельных координатному направлению x (см. рис. 4) [11,16]. Ширина слоя определяется как полусумма координат точек, в которых слой пересекает линейную функцию. Количество слоев разбиения M выбирается таким, чтобы слои были достаточно тонкими и их можно было рассматривать в качестве малых возмущений. Слои нумеруются m = 1, 2, ..., M, начиная от фонового значения.

Рис. 4. Разбиение линейной реконструкции функций *H* и *u* на горизонтальные слои малых возмущений.

Таким образом, на полуотрезках $[x_{k-l/2}, x_k]$ и $[x_k, x_{k+l/2}]$ линейная реконструкция функций высоты уровня жидкости и скорости заменяется

конструкцией, состоящей из общего постоянного фона и расположенных на нем горизонтальных слоев разбиения. Следует заметить, что для каждого слоя индивидуальным фоном является либо общий постоянный фон, либо поверхность предыдущего слоя.

5.3. Аппроксимация интегральных потоков

Согласно представлению линейной реконструкции на полуотрезках $\begin{bmatrix} x_{k-1/2}, x_k \end{bmatrix}$ и $\begin{bmatrix} x_k, x_{k+1/2} \end{bmatrix}$, интегральные потоки массы и импульса через границу $x = x_k$ ячеек Ω_k и Ω_{k+1} за время от $t = t_n$ до $t = t_n + \tau_n$ складываются из потока, обусловленного фоновыми значениями функций, и интегрального потока от малых возмущений:

$$\begin{split} & IFM_{k}^{n} \simeq \overline{IFM}_{k}^{n} + \delta IFM_{k}^{n} \\ & IFI_{k}^{n} \simeq \overline{IFI}_{k}^{n} + \delta IFI_{k}^{n} \\ \hline & IFM_{k}^{n} = (\overline{H}_{k} - b_{k})\overline{U}_{k}\tau_{n}, \overline{IFI}_{k}^{n} = \left[(\overline{H}_{k} - b_{k})\overline{U}_{k}^{2} + \frac{1}{2}g(\overline{H}_{k} - b_{k})^{2} \right]\tau_{n} \\ & \delta IFM_{k}^{n} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \overline{U}\delta H(x_{k},t) - (\overline{H} - \overline{b})\delta u(x_{k},t) \right\} dt \\ & \delta IFI_{k}^{n} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \left(\overline{U} + g(\overline{H} - \overline{b}) \right) \delta H(x_{k},t) + 2\overline{U}(\overline{H} - \overline{b}) \delta u(x_{k},t) \right\} dt \end{split}$$

где \bar{H}_k, \bar{U}_k - фоновые значения функций высоты уровня жидкости и скорости.

Малые возмущения δH и δu , входящие в состав потоков δIFM_k^n и δIFI_k^n , представляют собой решение линеаризованной системы (0.2)

$$\begin{cases} \delta H(x,t) \approx \sum_{m=1}^{M} \frac{\overline{c}_{m}}{2g} \left[\left\{ Q_{m}^{(\overline{u}_{m}+\overline{c}_{m})}[\mathbf{u}] + \frac{g}{\overline{c}_{m}} Q_{m}^{(\overline{u}_{m}+\overline{c}_{m})}[\mathbf{H}] \right\} - \left\{ Q_{m}^{(\overline{u}_{m}-\overline{c}_{m})}[u] - \frac{g}{\overline{c}_{m}} Q_{m}^{(\overline{u}_{m}-\overline{c}_{m})}[\mathbf{H}] \right\} \right] \\ \delta u(x,t) \approx \sum_{m=1}^{M} \frac{1}{2} \left[\left\{ Q_{m}^{(\overline{u}_{m}+\overline{c}_{m})}[\mathbf{u}] + \frac{g}{\overline{c}_{m}} Q_{m}^{(\overline{u}_{m}+\overline{c}_{m})}[\mathbf{H}] \right\} + \left\{ Q_{m}^{(\overline{u}_{m}-\overline{c}_{m})}[u] - \frac{g}{\overline{c}_{m}} Q_{m}^{(\overline{u}_{m}-\overline{c}_{m})}[\mathbf{H}] \right\} \right] \end{cases}$$

Через $Q_m^{(\bar{u}_m \pm \bar{c}_m)}[H]$ и $Q_m^{(\bar{u}_m \pm \bar{c}_m)}[u]$ обозначены малые возмущения функций высоты уровня жидкости и скорости, имеющие форму горизонтального слоя. Следует заметить, что каждый слой за время τ_n перемещается со своей характеристической скоростью по своему фону.

Таким образом, интегральные потоки δIFM_k^n и δIFI_k^n складываются из двух компонент, отвечающих характеристическим скоростям $\overline{u} + \overline{c}$ и $\overline{u} - \overline{c}$:

$$\begin{split} \delta IFM_{k}^{n} &\simeq \sum_{m=1}^{M} \left\{ \delta IFM_{k}^{n,(\overline{u}_{m}+\overline{c}_{m})} + \delta IFM_{k}^{n,(\overline{u}_{m}-\overline{c}_{m})} \right\} \\ \delta IFI_{k}^{n} &\simeq \sum_{m=1}^{M} \left\{ \delta IFI_{k}^{n,(\overline{u}_{m}+\overline{c}_{m})} + \delta IFI_{k}^{n,(\overline{u}_{m}-\overline{c}_{m})} \right\} \end{split}$$

где

$$\delta IFM_{k}^{n,(\overline{u}_{m}\pm\overline{c}_{m})} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \left(\overline{u}_{m}\pm\overline{c}_{m}\right) \left[\frac{1}{2} Q_{m}^{(\overline{u}_{m}\pm\overline{c}_{m})} [\mathrm{H}] \pm \frac{\sqrt{\overline{H}_{m}-\overline{b}}}{2\sqrt{g}} Q_{m}^{(\overline{u}_{m}\pm\overline{c}_{m})} [\mathrm{U}] \right] \right\} dt$$
$$\delta IFI_{k}^{n,(\overline{u}_{m}\pm\overline{c}_{m})} = \int_{t_{n}}^{t_{n}+\tau_{n}} \left\{ \left(\overline{u}_{m}\pm\overline{c}_{m}\right) \left[\frac{\left(\overline{u}_{m}\pm\overline{c}_{m}\right)}{2} Q_{m}^{(\overline{u}_{m}\pm\overline{c}_{m})} [\mathrm{H}] \pm \frac{\left(\overline{u}_{m}\pm\overline{c}_{m}\right)\sqrt{\overline{H}_{m}-\overline{b}}}{2\sqrt{g}} Q_{m}^{(\overline{u}_{m}\pm\overline{c}_{m})} [u] \right] \right\} dt$$

Следует отметить, что под \overline{b} , входящей в выражения компонент $\delta IFM_k^{n,(\overline{u}_m\pm\overline{c}_m)}$ и $\delta IFI_k^{n,(\overline{u}_m\pm\overline{c}_m)}$, понимается значение функции рельефа в центре расчетной ячейки.

5.4. Вычисление компоненты интегрального потока

В процессе вычисления интегрального потока OT малых возмущений участвуют горизонтальные слои разбиения из двух соседних ячеек $\boldsymbol{\Omega}_k$ и $\boldsymbol{\Omega}_{k+1}$. В связи с этим значение компонент $\delta IFM_k^{n,(\overline{u}_m\pm\overline{c}_m)}$ и $\delta IFI_{k}^{n,(\overline{u}_{m}\pm\overline{c}_{m})}$ соответствующих интегральных потоков определяется суммарной площадью тех частей горизонтальных слоев разбиения, расположенных на полуотрезках $[x_{k-1/2}, x_k]$ и $[x_k, x_{k+1/2}]$, которые за время τ_n , двигаясь каждый со своей характеристической скоростью, пересекли границу $x = x_k$ (см. рис. 5).

Рис. 5. Перемещение горизонтальных слоев малых возмущений.

6. Определение величины шага по времени

Описанная в п. 5.4 процедура вычисления компоненты интегрального потока является корректной при соблюдении условия устойчивости Куранта, которое применительно к уравнениям мелкой воды над неровным дном, принимает вид:

$$\tau_n = CFL * \min_{1 \le k \le N} \left\{ \frac{\Delta x}{\left| U_{k-1/2}^n - c_{k-1/2}^n \right|}, \frac{\Delta x}{\left| U_{k-1/2}^n + c_{k-1/2}^n \right|} \right\},$$

где *CFL* - число Куранта-Фридрихса-Леви.

Следует заметить, что согласно процедуре вычисления компоненты интегрального потока (см. п. 5.4) горизонтальные слои малых возмущений за время τ_n могут переместиться не более чем на половину длины расчётной ячейки. В связи с этим для квазиакустической схемы число Куранта *CFL* < 0.5.

7. Результаты расчётов

7.1 Расчёт уединённой трансзвуковой волны разряжения

Рассмотрим задачу о распаде произвольного разрыва над ровным дном[17] с кусочно-постоянными начальными данными:

$$H(x,0) = \begin{cases} H_L = 10.0, x \le x_0 \\ H_R = 1.0, x > x_0 \end{cases}, u(x,0) = \begin{cases} U_L = 0.0, x \le x_0 \\ U_R, x > x_0 \end{cases}, b_L = b_R = 0.0$$

где $x = x_0$ – положение разрыва. Значение функции скорости справа от разрыва U_R определяется из постоянства инварианта $I^+ = u + \sqrt{gH}$:

$$U_R = U_L + \sqrt{gH_L} - \sqrt{gH_R}$$

Решение задачи представляет собой распространяющуюся влево уединенную трансзвуковую волну разряжения, содержащую звуковую точку.

Расчет задачи проводился в области $\Omega = [0;1]$. Разрыв в начальный момент времени располагался в $x_0 = 0.5$. Область Ω разбивалась на 100 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3. Расчёт проводился до момента времени t = 0.0323799 с постоянным шагом по времени. Проводилось сравнение с точным решением (см. рис. 6).

Рис. 6. Расчёт трансзвуковой волны разряжения: (а) – профиль глубины Н; (б) – профиль скорости U.

Результаты расчётов показали, что квазиакустическая схема хорошо согласуется с точным решением на фронте волны разряжения. Наибольшее отклонение численного решения от точного наблюдается в областях стыковки волны разряжения с участками постоянного течения, где производная решения терпит разрыв.

Следует также отметить, что квазиакустическая схема позволяет физически корректно воспроизводить решение в окрестности звуковой точки. В методе не требуется отдельно обрабатывать звуковую точку. Решение в окрестности звуковой точки воспроизводится за счёт перемещения горизонтальных слоёв разбиения со своими характеристическими скоростями по своему индивидуальному фону.

Ниже в таблицах 1 и 2 приводятся значения величин погрешности численного решения в трёх сеточных нормах:

$$\begin{split} \left\|H\right\|_{L_{\infty}} &= \max_{1 \le i \le N} \left|H_{i-1/2}^{T} - H_{i-1/2}^{T,(\text{exact})}\right|, \left\|H\right\|_{L_{1}} = \sum_{i=1}^{N} \left|H_{i-1/2}^{T} - H_{i-1/2}^{T,(\text{exact})}\right| \Delta x, \left\|H\right\|_{L_{2}} = \\ &= \left(\sum_{i=1}^{N} \left|H_{i-1/2}^{T} - H_{i-1/2}^{T,(\text{exact})}\right|^{2} \Delta x\right)^{1/2} \\ \left\|U\right\|_{L_{\infty}} &= \max_{1 \le i \le N} \left|U_{i-1/2}^{T} - U_{i-1/2}^{T,(\text{exact})}\right|, \left\|U\right\|_{L_{1}} = \sum_{i=1}^{N} \left|U_{i-1/2}^{T} - U_{i-1/2}^{T,(\text{exact})}\right| \Delta x, \left\|U\right\|_{L_{2}} = \\ &= \left(\sum_{i=1}^{N} \left|U_{i-1/2}^{T} - U_{i-1/2}^{T,(\text{exact})}\right|, \left\|U\right\|_{L_{2}} = \left(\sum_{i=1}^{N} \left|U_{i-1/2}^{T} - U_{i-1/2}^{T,(\text{exact})}\right|^{2} \Delta x\right)^{1/2} \end{split}$$

где $H_{i-1/2}^{T}$, $U_{i-1/2}^{T}$ - значение численного решения на момент времени t = 0.0323799, $H_{i-1/2}^{T,(\text{exact})}$, $U_{i-1/2}^{T,(\text{exact})}$ - значение точного решения в центре пространственно-временной ячейки на момент времени t = 0.0323799.

N,	Н		
кол-во ячеек	L_{∞}	L_1	L_2
N = 100	0.1310457541	0.0195149689	0.0315365393
N = 200	0.0856111609	0.0096821954	0.0167056879
N = 400	0.0540145027	0.0048653008	0.0088432528
N = 800	0.0324457201	0.0024696856	0.0046588464
N = 1600	0.0154365153	0.0012520637	0.0024049485

Таблица. 1. Величина погрешности решения, полученного по квазиакустической схеме, в сеточных нормах L_{∞}, L_1, L_2 при различном количестве расчётных ячеек: функция глубины H.

N,	U		
кол-во ячеек	L_{∞}	L_1	L_2
N = 100	0.2439911818	0.0351840537	0.0570889237
N = 200	0.1842951172	0.0166677093	0.0302631783
N = 400	0.1036797606	0.0082611631	0.0158916244
N = 800	0.0664948870	0.0041620141	0.0083386321
N = 1600	0.0413233470	0.0020882508	0.0042791355

Таблица. 2. Величина погрешности решения, полученного по квазиакустической схеме, в сеточных нормах L_{∞}, L_1, L_2 при различном количестве расчётных ячеек: функция скорости U.

На рис. 7 представлены зависимости величины погрешности от количества расчетных ячеек в указанных сеточных нормах.

Рис. 7. Зависимость величины погрешности в нормах L_{∞}, L_1, L_2 от количества расчетных ячеек: (а) – функция глубины *H*; (б) – функция скорости *U*.

7.2 Задача о разрушении плотины с сильным перепадом глубины

Рассмотрим задачу о распаде произвольного разрыва над ровным дном с начальными данными:

$$H_{L} = 10.0, H_{R} = 0.1, U_{L} = U_{R} = 0.0, b_{L} = b_{R} = 0.0$$

При выбранных начальных данных влево от разрыва будет распространяться волна разряжения, а вправо – гидродинамичсекий

прыжок. Данная задача известна как задача о разрушении плотины с сильным перепадом глубины [5].

Расчет задачи проводился в области $\Omega = [0;1]$. Разрыв в начальный момент времени располагался в $x_0 = 0.5$. Область Ω разбивалась на 100 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3. Расчёт проводился до момента времени t = 0.032760. Проводилось сравнение с точным решением (см. рис. 8).

Рис. 8. Расчёт задачи о разрушении плотины с сильным перепадом глубины: (a) — профиль функции глубины, (б) — профиль функции скорости на момент времени t = 0.032760.

Результаты расчётов показали, что квазиакустическая схема достаточно хорошо воспроизводит профиль волны разряжения. При этом фронт гидродинамического прыжка занимает присерно 3-4 расчетные ячейки. Следует отметить, что при построении численного решения в схеме не используются лимитеры и искуственные регуляризаторы.

7.3 Задача о распаде разрыва с «сухим дном»

Рассмотрим задачу о распаде разрыва, справой стороны от которого жидкость отсутствует, т.е. $H_R = 0.0$ («сухое дно»). Слева от разрыва глубина $H_L = 1.0$. В начальный момент времени жидкость покоится $(U_L = U_R = 0.0)$. Начальные данные взяты из работы [6]. Задача имеет аналитическое решение, представляющее собой комбинацию волны разряжения с участками постоянного течения (см. рис. 9).

Расчет задачи проводился в области $\Omega = [0;50.0]$. Разрыв в начальный момент времени располагался в $x_0 = 20.0$. Область Ω разбивалась на 500 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3. Расчёт проводился до момента времени t = 3.5059143.

Результаты расчетов показали, что решение, полученное по квазиакустической схеме, согласуется с точным решением, а также решением, полученным другим методом [6]. Следует отметить, что в квазиакустической схеме для реализации «сухого дна» не требуется использования надстроечных параметров.

7.3 Задача о распаде произвольного разрыва над неровным дном

В данном разделе представлены результаты расчёта задачи о распаде произвольного разрыва над неровным дном[18,19].

В качестве первого теста рассматривается задача с начальными данными [20]

$$H_L = 10.0, H_R = 1.0, U_L = U_R = 0$$

Функция, задающая рельеф дна, b(x) имеет форму прямоугольной ступеньки:

$$b_L = 3.0, b_R = 0.0$$

В начальный момент времени положение разрыва совпадает с границей ступеньки. При выбранных начальных данных влево от разрыва распространяется волна разряжения, примыкающая к стационарному скачку, на котором выполняются законы сохранеия массы и полной энергии; вправо - два гидродинамичсеких прыжка (см. рис. 10).

Расчёт задачи проводился в области $\Omega = [0;100.0]$. Разрыв в начальный момент времени располагался в $x_0 = 50.0$. Область Ω разбивалась на 1000 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3. Расчёт проводился до момента времени t = 2.713602.

Рис. 10. Расчёт задачи о распаде произвольного разрыва над неровным дном: (а) – профиль высоты уровня жидкости, (б) – профиль скорости на момент времени t = 2.713602.

Полученные результаты расчётов хорошо согласуются с решением, представленным в работе [20].

Рассмотрим также задачу о распаде разрыва с другими начальными данными [5] :

$$H_L = 0.75, H_R = 1.3, Fr_L = -3.5, Fr_R = -1.5$$

где $Fr = u * \sqrt{g(H-b)}$ - число Фруда.

Функция, задающая рельеф дна, b(x) имеет форму прямоугольной ступеньки:

$$b_{I} = 0.0, b_{P} = 0.2$$

В начальный момент времени положение разрыва совпадает с границей ступеньки. При указанных начальных данных слева от разрыва формируются две волны разряжения: одна волна распространяется влево, а другая – вправо. Справа от разрыва располагается стационарный гидродинамический прыжок (см. рис. 11).

Расчёт задачи проводился в области $\Omega = [-15.0; 5.0]$. Разрыв в начальный момент времени располагался в $x_0 = 0.0$. Область Ω разбивалась на 400 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3. Расчёт проводился до момента времени t = 0.983113.

Рис. 11. Расчёт задачи о распаде произвольного разрыва над неровным дном: (а) – профиль высоты уровня жидкости, (б) – профиль скорости на момент времени t = 0.983113.

Результаты расчётов показали, что решение, полученное по квазиакустичсекой схеме, хорошо согласуются с точным решением, представленным в работе [5].

Заключение

Приведено описание применения квазиакустической схемы для численного решения уравнений мелкой воды над неровным дном. Представлены результаты тестовых расчётов, которые продемонстрировали, что квазиакустическая схема позволяет физически корректно вопроизводить решение в окрестности звуковой точки. Численное решение, полученное по схеме, хорошо согласутеся с точным решением и не уступает по качеству решениям, полученным другими методами [5,20]. Следует также отметить, что в квазиакустической схеме при построении численного решения не используются искусственные регуляризаторы и надстроечные параметры.

Литература

- 1. *Glaister P.* Approximate Riemann solutions of the shallow water equations // ASCE Journal of Hydraulic Engineering. 1988. v. 26, N 3. pp. 293 306.
- Bermudez A., Vazquez M.E. Upwind methods for hyperbolic conservation laws with source terms. // Computers & Fluids. – 1994. – V. 23, № 8. – P. 1049-1071.
- 3. *Garcia-Navarro P., Vazquez M.E.* On numerical treatment of the source terms in shallow water equations // Computers and Fluids. 2000. v. 29. pp. 951 979.
- 4. *Toro E.F.* Shock-capturing methods for free –surface shallow flows. Wiliey, New York. 2001.
- 5. Bernetti R., Titarev V.A., Toro E.F. Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry // Journal of Computational Physics. 2008. V. 227, № 6. Pp. 3212-3243.
- 6. *Yuxin H., Ningchuan Z., Yuguo P.* Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography // Engineering Applications of Computational Fluid Mechanics. 2013. v. 7, N 1. pp. 40 54.
- Navon I.M. Finite-element simulation of the shallow water equations model on a limited-area domain. // Applied Mathematical Modelling. – 1979. –V. 3. – P. 337-348.
- 8. *Heniche M., Secretan Y., Boundreau P., Leclerc M.* A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries // Advances in Water Resource. 2000. v. 23. pp. 359 372.

- Harnet E., Le Roux D.Y., Legat V., Deleersnijder E. An efficient Eulerian finite element method for the shallow water equations // Ocean Modelling. 2005. v. 10. pp. 115 – 136.
- 10.Van Leer B. Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method // Journal of Computational Physics. 1979. V. 32. Pp. 101–136.
- 11. Абакумов М.В., Галанина А.М., Исаков В.А., Тюрина Н.Н., Фаворский А.П., Хруленко А.Б. Квазиакустическая схема для уравнений Эйлера газовой динамики // Дифференциальные уравнения. 2011. Т. 47, № 8. С. 1092-1098.
- 12. Исаков В.А., Фаворский А.П. Квазиакустическая схема для уравнений Эйлера газовой динамики в случае двух пространственных измерений // Мат. Моделирование. 2012. Т. 24, № 12. С. 55-59.
- 13. Исаков В.А. Применение квазиакустической схемы к решению многомерных задач газовой динамики // сборник Прикладная математика и информатика. 2013. Т. 43. с. 45-54.
- 14. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит. 2001. 608 с.
- 15. Самарский А.А. Теория разностных схем. М.: Наука, 1977.
- 16. Фаворский А.П., Тыглиян М.А., Тюрина Н.Н., Галанина А.М., Исаков В.А. Численное моделирование распространения гемодинамических импульсов // Мат. Моделирование. 2009. Т. 21, № 12. С. 21-34.
- 17. Петросян А.С. Дополнительные главы теории мелкой воды. М.: Ротапринт ИКИ РАН. 2014.
- 18. Остапенко В.В. Течения, возникающие при разрушении плотины над уступом дна // ПМТФ. 2003. Т. 44, № 6. 107-122.
- 19. Остапенко В.В. Течения, возникающие при разрушении плотины над ступенькой дна. Новосибирск: ПМТФ. 2003. Т. 44. № 4. 51 63.
- 20.*Булатов О.В.* Аналитические решения и численные решения уравнений Сен-Венана для некоторых задач о распаде разрыва над уступом и ступенькой дна // ЖВМ и МФ. 2014. Т. 54, № 1. С. 150-164.