В.А. Исаков¹

ПРИМЕНЕНИЕ БЕЗЛИМИТЕРНОЙ КВАЗИАКУСТИЧЕСКОЙ СХЕМЫ ДЛЯ РЕШЕНИЯ ДВУХМЕРНЫХ УРАВНЕНИЙ МЕЛКОЙ ВОДЫ НАД НЕРОВНЫМ ДНОМ

Введение

Система уравнений мелкой воды представляет собой нелинейную систему уравнений гиперболического типа, описывающую движение несжимаемой жидкости в областях, характерные размеры которых сильно преобладают над глубиной. Уравнения находят широкое применение при расчете течений в прибрежной зоне рек, озер и морей; при расчете приливных и отливных течений; моделировании набегания волн цунами на береговую линию, а также в задачах прогноза погоды.

Основным подходом к решению уравнений мелкой воды является численное решение. К наиболее распространненым можно отнести конечно-разностные методы [1-5], методы конечных элементов [6-11], а конечно-объемные методы [12-20], позволяющие также строить консервативные разностные схемы. Среди конечно-объемных методов, в свою очередь, широкое распространение получили методы Годуновского типа, в которых для вычисления потока используется решение задачи о распаде разрыва (задача Римана) [15-17]. В настоящее время к наиболее распространенным подходам решения задачи Римана можно отнести HLL [21] и HLLC [15,16,22], основанные на её приближенном решении. Следует также отметить, что для повышения точности в схемах годуновского типа применяется линейная реконструкция решения. Однако, согласно теореме Годунова [23], это приводит к немонотонности решения. Одним из возможных способов обеспечить монотонность лимитерных решения является применение численного функций, ограничивающих угол наклона линейной реконструкции.

В отличие от классических конечно-объемных схем годуновского типа в квазиакустической схеме применяется другой подход к вычислению потока. Для вычисления потока используется разбиение линейной реконструкции на блоки малых возмущений, перемещающиеся со своей характеристической скоростью по индивидуальному

¹ к.ф.-м.н., ассистент кафедры вычислительных методов

постоянному фону в соответствии с решением линеаризованной системы уравнений мелкой воды. Квазиакустический подход показал достаточно хорошие результаты при решении уравнений Эйлера газовой динамики как в одномерном [24], так и в многомерном случае [25,26]. В работе рассматривается обобщение квазиакустического подхода для решения уравнений мелкой воды над неровным дном [27] на случай двух пространственных измерений.

1. Постановка задачи

В области $\Omega = [X_1; X_2] \times [Y_1; Y_2] \times [0; T]$, имеющей форму прямоугольного параллелилипипеда, рассмотрим систему двухмерных уравнений мелкой воды над неровным дном для несжимаемой жидкости:

$$\begin{cases} \frac{\partial H}{\partial t} + \frac{\partial ((H-B)u)}{\partial x} + \frac{\partial ((H-B)v)}{\partial y} = 0\\ \frac{\partial (I_x)}{\partial t} + \frac{\partial}{\partial x} \left((H-B)u^2 + \frac{1}{2}g(H-B)^2 \right) + \frac{\partial ((H-B)uv)}{\partial y} = -g(H-B)\frac{\partial B}{\partial x} \quad (1)\\ \frac{\partial (I_y)}{\partial t} + \frac{\partial ((H-B)uv)}{\partial x} + \frac{\partial}{\partial y} \left((H-B)v^2 + \frac{1}{2}g(H-B)^2 \right) = -g(H-B)\frac{\partial B}{\partial y} \end{cases}$$

где t – время, x, y – декартовы координаты, H(x, y, t) – высота уровня жидкости, u(x, y, t), v(x, y, t) – усредненные по глубине компоненты вектора скорости вдоль координатнного направления x и y соответственно, $I_x = (H - B)u, I_y = (H - B)v$ – компоненты вектора импульса жидкости, B(x, y) – функция, задающая рельеф дна, g = 9,81 – ускорение свободного падения.

Система уравнений (1) выражает законы сохранения массы и импульса в области Ω .

Неограничивая общности, будем рассматривать начально-краевую задачу в области Ω . В начальный момент времени задаются

распределения функций высоты уровня жидкости и скоростей, а также функция рельефа дна:

$$\begin{aligned} H(x,y,0) &= H^{(0)}(x,y), \quad u(x,y,0) = u^{(0)}(x,y), \quad v(x,y,0) = v^{(0)}(x,y), \\ (x,y) \in (X_1;X_2) \times (Y_1;Y_2) \end{aligned}$$

Постановка граничных будет описана ниже.

2. Построение квазиакустической схемы

В области Ω введем ортогональную расчетную сетку ω :

$$\omega = \omega_{\Delta x, \Delta y} \times \omega_{\tau_n},$$

где

 $\omega_{\Delta x,\Delta y} = \left\{ (x_i, y_j) : x_i = x_{i-1} + \Delta x, i = \overline{1, N_x}, x_0 = X_1, x_{N_x} = X_2, y_j = X_1, x_{N_x} = X_2, y_j = X_1, y_j = X_2, y$ $y_{j-1} + \Delta y, j = \overline{1, N_y}, y_0 = Y_1, y_{N_y} = Y_2$

– равномерная сетка по каждому из координатных направлений;

 $\omega_{\tau} = \{t_n: t_{n+1} = t_n + \tau_n, n = \overline{0, T}\}$ – неравномерная сетка по времени. Выделим на расчетной сетке $\omega_{\Delta x,\Delta y}$ пространственные ячейки

 $\Omega_{ii} = [x_{i-1}, x_i] \times [y_{i-1}, y_i].$ В центрах ячеек

 $(x_{i-1/2}, y_{j-1/2}): x_{i-1/2} = 0.5(x_{i-1} + x_i), y_{j-1/2} = 0.5(y_{j-1} + y_j)$ определим сеточные функции высоты уровня жидкости $H_{i-1/2, j-1/2}$, комопонент вектора скорости $U_{i-1/2,j-1/2}$ и $V_{i-1/2,j-1/2}$, компонент импульса $(I_x)_{i-1/2,j-1/2}, (I_y)_{i-1/2,j-1/2},$ под которыми будем понимать средние интегральные по ячейке значения функций на фиксированный момент времени t:

$$\begin{aligned} Q_{i-1/2,j-1/2} &= \frac{1}{\Delta x \Delta y} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} Q(x,y,t) dy dx \\ U_{i-1/2,j-1/2} &\simeq \frac{(I_x)_{i-1/2,j-1/2}}{H_{i-1/2,j-1/2} - B_{i-1/2,j-1/2}}, \ V_{i-1/2,j-1/2} &\simeq \frac{(I_y)_{i-1/2,j-1/2}}{H_{i-1/2,j-1/2} - B_{i-1/2,j-1/2}}, \\ \text{где } Q_{i-1/2,j-1/2} &= \left\{ H_{i-1/2,j-1/2}, (I_x)_{i-1/2,j-1/2}, (I_y)_{i-1/2,j-1/2} \right\}^T. \end{aligned}$$

В пределах ячейки Ω_{ij} приблизим функцию рельефа дна полиномом Лагранжа:

$$B(x,y) \approx B_{ij}(x,y) = B_{i-1,j-1} \frac{(x_i - x)(y_j - y)}{\Delta x \Delta y} + B_{i-1,j} \frac{(x_i - x)(y - y_{j-1})}{\Delta x \Delta y} + B_{i,j-1} \frac{(x - x_{i-1})(y_j - y)}{\Delta x \Delta y} + B_{ij} \frac{(x - x_{i-1})(y - y_{j-1})}{\Delta x \Delta y},$$

где $B_{i-1,j-1}, B_{i-1,j}, B_{i,j-1}, B_{i,j}$ – значения функции B(x, y) в узлах сетки $\omega_{\Delta x,\Delta v}$.

Под величиной $B_{i-1/2,j-1/2}$ будем понимать среднее интергальное значение функции рельефа дна по ячейке Ω_{ij} : $B_{i-1/2,j-1/2} = \frac{1}{\Delta x \Delta y} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} B_{ij}(x, y) dy dx = \frac{B_{i-1,j-1}+B_{i-1,j}+B_{i,j-1}+B_{ij}}{4}$

Построение квазиакустической схемы проводится методом баланса [19]. Проинтегрировав систему уравнений (1) по простарнственновремененной ячейке $\Omega_{ij}^n = \Omega_{ij} \times [t_n, t_n + \tau_n]$, получаем интегроразностные балансные соотношения массы и импульса:

$$(Q_{i-1/2,j-1/2}^{n+1} - Q_{i-1/2,j-1/2}^{n}) \Delta x \Delta y + [IF_{i} - IF_{i-1}] + [IG_{j} - IG_{j-1}] = S,$$
(2)
где
 $IF_{i+\delta} = \int_{t_{n}}^{t_{n}+\tau_{n}} \int_{y_{j-1}}^{y_{j}} \{F(x_{i+\delta}, y, t)\} dy dt,$
 $IG_{j+\delta} = \int_{t_{n}}^{t_{n}+\tau_{n}} \int_{x_{i-1}}^{x_{i}} \{G(x, y_{j+\delta}, t)\} dx dt,$ $\delta \in \{-1, 0\};$
 $F(x_{i+\delta}, y, t) = \{H - B, (H - B)u^{2} + 0.5g(H - B)^{2}, (H - B)uv\}^{T} -$ вектор-
столбец потоковых переменных вдоль координатного направления $x;$

 $G(x, y_{j+\delta}, t) = \{H - B, (H - B)uv, (H - B)v^2 + 0.5g(H - B)^2\}^T$ – векторстолбец потоковых переменных вдоль координатного направления *y*;

$$S = \left\{0, -\int_{t_n}^{t_n+\tau_n} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} \left\{g(H-B)\frac{\partial B}{\partial x}\right\} dy dx dt, -\int_{t_n}^{t_n+\tau_n} \int_{x_{i-1}}^{x_i} \int_{y_{j-1}}^{y_j} \left\{g(H-B)\frac{\partial B}{\partial x}\right\} dy dx dt\right\}^T$$
 – вектор-столбец правых частей.

Величины $Q_{i-1/2,j-1/2}^{n}$, $Q_{i-1/2,j-1/2}^{n+1}$ суть средние интегральные значения функций на моменты времени t_n и t_{n+1} соответственно.

Принимая во внимание полученные балансные соотношения, построение квазиакустической схемы сводится к вычислению интегральных потоков, а также аппроксимации правых частей в балансных соотношениях импульса.

3. Вычисление интегральных потоков

Для вычисления интегрального потока в квазиакустической схеме наряду с основной системой уравнений используется линеаризованная система.

3.1 Линеаризованная система уравнений мелкой воды

Проводя линеаризацию системы уравнений (1) в достаточно малой окрестности значений $\bar{H}, \bar{U}, \bar{V}$ и принебрегая величинами второго и выше порядков малости, а также заменяя функцию рельефа дна в окрестности некотороым постоянным значением \bar{B} , получаем линейную однородную систему уравнений:

$$\frac{\partial(\delta\psi)}{\partial t} + A^{(x)}\frac{\partial(\delta\psi)}{\partial x} + A^{(y)}\frac{\partial(\delta\psi)}{\partial y} = 0 , \qquad (3)$$

где $\delta \psi = {\delta H, \delta u, \delta v}^T$ – вектор-столбец малых возмущений;

$$A^{(x)} = \begin{bmatrix} \bar{U} & (\bar{H} - \bar{B}) & 0\\ g & \bar{U} & 0\\ 0 & 0 & \bar{U} \end{bmatrix}, \quad A^{(y)} = \begin{bmatrix} \bar{V} & 0 & (\bar{H} - \bar{B})\\ 0 & \bar{V} & 0\\ g & 0 & \bar{V} \end{bmatrix}$$

- матрицы коэффициентов при производных по соответствующему координатному направлению.

Применяя расщепление по координатным направлениям, приближенное решение системы (3) представимимо в виде:

$$\begin{split} \delta H(x,y,t) &\simeq \frac{\bar{c}}{2g} \Big[\Big(\delta u^{(0)}(\xi^+) + \frac{g}{\bar{c}} \delta H^{(0)}(\xi^+) \Big) - \Big(\delta u^{(0)}(\xi^-) - \frac{g}{\bar{c}} \delta H^{(0)}(\xi^-) \Big) \Big] + \\ &+ \frac{\bar{c}}{2g} \Big[\Big(\delta v^{(0)}(\eta^+) + \frac{g}{\bar{c}} \delta H^{(0)}(\eta^+) \Big) - \Big(\delta v^{(0)}(\eta^-) - \frac{g}{\bar{c}} \delta H^{(0)}(\eta^-) \Big) \Big] ; \\ \delta u(x,y,t) &\simeq \frac{1}{2} \Big[\Big(\delta u^{(0)}(\xi^+) + \frac{g}{\bar{c}} \delta H^{(0)}(\xi^+) \Big) + \Big(\delta u^{(0)}(\xi^-) - \frac{g}{\bar{c}} \delta H^{(0)}(\xi^-) \Big) \Big] + \\ &+ \delta u^{(0)}(\eta^c) ; \\ \delta v(x,y,t) &\simeq \frac{1}{2} \Big[\Big(\delta v^{(0)}(\eta^+) + \frac{g}{\bar{c}} \delta H^{(0)}(\eta^+) \Big) + \Big(\delta v^{(0)}(\eta^-) - \frac{g}{\bar{c}} \delta H^{(0)}(\eta^-) \Big) \Big] + \end{split}$$

 $+\delta v^{(0)}(\xi^{c})$, (4) где $\delta H^{(0)}, \delta u^{(0)}, \delta v^{(0)}$ малые возмущения функций в начальный момент времени; $\xi^{\pm} = x - \lambda^{(\pm)}t, \xi^{c} = x - \lambda^{(c)}t$ – линейные характеристики вдоль координатного направления x; $\lambda^{(\pm)} = \bar{U} \pm \bar{c}, \lambda^{(c)} = \bar{U}$ – собственные значения матрицы $A^{(x)}$; $\eta^{\pm} = y - \mu^{(\pm)}t, \eta^{c} = y - \mu^{(c)}t$ – линейные

характеристики вдоль координатного направления *y*; $\mu^{(\pm)} = \bar{V} \pm \bar{c}, \ \mu^{(c)} = \bar{V}$ – собственные значения матрицы $A^{(y)}$; $\bar{c} = \sqrt{g(\bar{H} - \bar{B})}$ – скорость распространения малых возмущений по жидкости.

3.2 Линейная реконструкция базисных функций

В пределах каждой ячейки Ω_{ij} проведем локально-линейную реконструкцию функций высоты уровня жидкости и скоростей на момент времени $t = t_n$ (см. рис. 2), которые в дальнейшем будем называть базисными:

$$\begin{split} \varphi_{ij}(x,y;x_{i-1/2},y_{j-1/2},t_n) &\simeq \Psi_{i-1/2,j-1/2}^n + (x-x_{i-1/2})D\Psi_{ij}^{(x)} + (y-y_{j-1/2})D\Psi_{ij}^{(y)}, \end{split}$$

где $\varphi = \{H, u, v\}^T; \Psi_{i-1/2, j-1/2}^n = \{H_{i-1/2, j-1/2}^n, U_{i-1/2, j-1/2}^n, V_{i-1/2, j-1/2}^n\}^T$ – вектор-столбец сеточных функций.

Рис. 2. Локально-линейная реконструкция функций в ячейке Ω_{ij} .

Величины $D\Psi_{ij}^{(x)}$ и $D\Psi_{ij}^{(y)}$ определяют компоненты вектора нормали линейной плоскости, проходящей через значение сеточной функции $\Psi_{i-1/2,j-1/2}^{n}$, и вычисляются по формулам:

$$D\Psi_{ij}^{(x)} = \frac{|\Psi_{\bar{x},ij}^{n}|}{|\Psi_{\bar{x},ij}^{n}| + |\Psi_{x,ij}^{n}|} \Psi_{x,ij}^{n} + \frac{|\Psi_{x,ij}^{n}|}{|\Psi_{\bar{x},ij}^{n}| + |\Psi_{x,ij}^{n}|} \Psi_{\bar{x},ij}^{n};$$

$$D\Psi_{ij}^{(y)} = \frac{|\Psi_{\bar{y},ij}^{n}|}{|\Psi_{\bar{y},ij}^{n}| + |\Psi_{y,ij}^{n}|} \Psi_{y,ij}^{n} + \frac{|\Psi_{y,ij}^{n}|}{|\Psi_{\bar{y},ij}^{n}| + |\Psi_{y,ij}^{n}|} \Psi_{\bar{y},ij}^{n};$$

$$\Psi_{\bar{x},ij}^{n} = \frac{\Psi_{i-1/2,j-1/2}^{n} - \Psi_{i-3/2,j-1/2}^{n}}{\Delta x}, \Psi_{x,ij}^{n} = \frac{\Psi_{i+1/2,j-1/2}^{n} - \Psi_{i-1/2,j-1/2}^{n}}{\Delta x};$$

$$\Psi_{\bar{y},ij}^{n} = \frac{\Psi_{i-1/2,j-1/2}^{n} - \Psi_{i-1/2,j-3/2}^{n}}{\Delta y}, \Psi_{y,ij}^{n} = \frac{\Psi_{i-1/2,j+1/2}^{n} - \Psi_{i-1/2,j-1/2}^{n}}{\Delta y};$$

Результаты расчетов показали, что указанный способ вычисления величин $D\Psi_{ij}^{(x)}$, $D\Psi_{ij}^{(y)}$ позволяет сохранить монотонность линейной функции $\varphi_{ij}(x, y; x_{i-1/2}, y_{j-1/2}, t_n)$ на соответствующих участках монотонности сеточной функции $\Psi_{i-1/2,j-1/2}^n$ вдоль координатного

направления (при этом другое координатное направление считаеся фиксированным).

3.3 Вертикальное разбиение линейной реконструкции

Проведем разбиение каждой ячейки Ω_{ij} на прямоугольные подъячейки $\Omega_{ij}^{(k,m)}$ размером $\Delta x^{(k)} \times \Delta y^{(m)}$, где $k = \overline{1, N}, m = \overline{1, N}$. В пределах каждой подъячейки линейная функция $\varphi_{ij}(x, y; x_{i-1/2}, y_{j-1/2}, t_n)$ заменяется столбцом, высота которого определяется значением функции в центре подъячейки и обозначается $\Psi_{i-1/2,j-1/2}^{(k,m)}$ (см. рис. 3).

Рис. 3. Вертикальное разбиение линейной реконструкции в ячейке Ω_{ii} .

3.4 Определение фоновых значений

Для вычисления интегрального потока через границу ячейки Ω_{ij} выделим на расчетной сетке $\omega_{\Delta x, \Delta y}$ четыре прямоугольные области (см. рис. 4):

$$F_{ij}^{(1)} = [x_{i-3/2}, x_{i-1/2}] \times [y_{j-1}, y_j]$$

$$F_{ij}^{(2)} = [x_{i-1}, x_i] \times [y_{j-3/2}, y_{j-1/2}]$$

$$F_{ij}^{(3)} = [x_{i-1/2}, x_{i+1/2}] \times [y_{j-1}, y_j]$$

$$F_{ij}^{(4)} = [x_{i-1}, x_i] \times [y_{j-1/2}, y_{j+1/2}]$$

Рис. 4. Расположение фоновых плоскостей ячейки Ω_{ij} .

Построенные области будем называть фоновыми плоскостями ячейки Ω_{ij} .

Для каждой фоновой плоскости определим фоновые значения сеточных функций $\Psi_{i-1/2,j-1/2}^{n}$:

$$\begin{split} \overline{\Psi}_{i-1} &= \frac{1}{\Delta x \Delta y} \left[\sum \sum \Psi_{i-1/2,j-1/2}^{(k,m)} \Delta x^{(k)} \Delta y^{(m)} + \sum \Psi_{i-3/2,j-1/2}^{(k',m')} \Delta x^{(k')} \Delta y^{(m')} \right] \\ &\left\{ (k,m): \Omega_{ij}^{(k,m)} \in F_{ij}^{(1)} \right\} & \left\{ (k',m'): \Omega_{i-1,j}^{(k',m')} \in F_{ij}^{(1)} \right\} \\ \overline{\Psi}_{j-1} &= \frac{1}{\Delta x \Delta y} \left[\sum \sum \Psi_{i-1/2,j-1/2}^{(k,m)} \Delta x^{(k)} \Delta y^{(m)} + \sum \Psi_{i-1/2,j-3/2}^{(k',m')} \Delta x^{(k')} \Delta y^{(m')} \right] \\ &\left\{ (k,m): \Omega_{ij}^{(k,m)} \in F_{ij}^{(2)} \right\} & \left\{ (k',m'): \Omega_{i,j-1}^{(k',m')} \in F_{ij}^{(2)} \right\} \\ \overline{\Psi}_{i} &= \frac{1}{\Delta x \Delta y} \left[\sum \sum \Psi_{i-1/2,j-1/2}^{(k,m)} \Delta x^{(k)} \Delta y^{(m)} + \sum \sum \Psi_{i+1/2,j-1/2}^{(k',m')} \Delta x^{(k')} \Delta y^{(m')} \right] \\ &\left\{ (k,m): \Omega_{ij}^{(k,m)} \in F_{ij}^{(3)} \right\} & \left\{ (k',m'): \Omega_{i+1,j}^{(k',m')} \in F_{ij}^{(3)} \right\} \\ \overline{\Psi}_{j} &= \frac{1}{\Delta x \Delta y} \left[\sum \sum \Psi_{i-1/2,j-1/2}^{(k,m)} \Delta x^{(k)} \Delta y^{(m)} + \sum \sum \Psi_{i-1/2,j+1/2}^{(k',m')} \Delta x^{(k')} \Delta y^{(m')} \right] \\ &\left\{ (k,m): \Omega_{ij}^{(k,m)} \in F_{ij}^{(4)} \right\} & \left\{ (k',m'): \Omega_{i,j+1}^{(k',m')} \in F_{ij}^{(4)} \right\} \\ \end{array}$$

3.5 Аппроксимация интегральных потоков

В пределах фоновых плоскостей ячейки Ω_{ij} представим базисные функции в виде суперпозиции фонового значения и расположенных на нем усеченных столбцов, высота которых определяется разностью высоты столбца и фонового значения.

Каждый усеченный столбец, в свою очередь, разбивается на N_{blocks} блоков одинаковой высоты, которые будем считать малыми возмущениями. В достаточно малой окрестности каждого блока проводится линеаризация базисных функции. При этом индивидуальным постоянным фоном для блока является значение функции с поверхности нижележащего блока, примыкающего со стороны фонового значения (см. рис. 5). Блоки нумеруются, начиная от фонового значения.

Рис. 5. Разбиение базисных функций на блоки малых возмущений.

В результате интегральные потоки через границу ячейки Ω_{ij} за время τ_n будут состоять из потока, обусловленного фоновыми значениями, и интегрального потока от малых возмущений. В качестве примера приведем выражение потока массы через границу $x = x_i$ ячейки Ω_{ij} :

$$\begin{split} IFM_i^{(x)} &\simeq \overline{IFM}_i^{(x)} + \delta IFM_i^{(x)} \\ \overline{IFM}_i^{(x)} &= (\bar{H}_i - \bar{B}_i)\bar{U}_i\Delta y\tau_n \\ \delta IFM_i^{(x)} &= \int_{t_n}^{t_n + \tau_n} \int_{y_{j-1}}^{y_j} \{\bar{H}\delta u(x_i, y, t) + \bar{U}\delta H(x_i, y, t)\} dy dt, \end{split}$$

где $\bar{B}_i = 0.5(B_{i,j-1} + B_{ij})$ – среднее по границе $x = x_i$ значение функции рельефа дна.

Входящие в состав потока $\delta IFM_i^{(x)}$ малые возмущения δu и δH представляют собой решение линеаризованной системы уравнений (4). Таким образом поток $\delta IFM_i^{(x)}$ складывается из двух компонент, отвечающих характеристическим скоростям $\bar{U} \pm \bar{c}$:

$$\begin{split} \delta IFM_{i}^{(x)} &\simeq \delta IFM_{i}^{(x),(\bar{U}+\bar{c})} + \delta IFM_{i}^{(x),(\bar{U}-\bar{c})} \\ \delta IFM_{i}^{(x),(\bar{U}\pm\bar{c})} &= \int_{t_{n}}^{t_{n}+\tau_{n}} \int_{y_{j-1}}^{y_{j}} \left\{ (\bar{U}\pm\bar{c}) \left[\pm \frac{\bar{c}}{2g} \delta u^{(n)} + \frac{1}{2} \delta H^{(n)} \right] \right\} dydt \end{split}$$

Интегральные потоки импульса аппроксимируются схожим образом. Следует отметить, что в состав потоков $\delta IFI_{1,j+\kappa}^{(y)}$ и $\delta IFI_{2,i+\kappa}^{(x)}$, $\kappa \in \{0, -1\}$ входит дополнительная компонента, отвечающая характеристической скорости \bar{V} и \bar{U} соответственно.

3.6 Вычисление компоненты интегрального потока

Малые возмущения базисных функций, входящие в состав компонент интегральных потоков, представляются в виде блоков малых возмущений.

Вычисление компоненты интегрального потока основано на смещении блоков функций, расположенных в соседних ячейках в пределах фоновой плоскости, участвующей в вычислении потока. Каждый блок за время τ_n перемещается по индивидуальному постоянному фону со своей характеристической скосростью (см. рис. 6).

Рис. 6. Перемещение блоков малых возмущений.

Вклад отдельного блока в результирующее значение компоненты потока определяется величиной объема той его части, которая за шаг по

времени переместилась за пределы границы ячейки, и умноженной на соответствующий коэффийиент. Фоновые значения функций, входящие в коэффициент, выбираются с поверхности нижележащего блока. Значение функции рельефа дна определяется в центре подъячейки, в пределах которой расположен данный блок.

4. Аппроксимация правой части в балансных соотношениях

Слагаемые *S*, стоящие в правых частях балансных соотношений (2), аппроксимируем в центре ячейки Ω_{ii} на момент времени $t = t_n$:

$$S \approx S_{i-1/2,j-1/2}^{n}$$

$$S_{i-1/2,j-1/2}^{n} = \{0, -g(H_{i-1/2,j-1/2}^{n} - B_{i-1/2,j-1/2}) (\bar{B}_{i} - \bar{B}_{i-1}) \Delta y \tau_{n}, -g(H_{i-1/2,j-1/2}^{n} - B_{i-1/2,j-1/2}) (\bar{B}_{j} - \bar{B}_{j-1}) \Delta x \tau_{n}\}^{T}.$$

Покажем, что такой способ аппроксимации позволяет квазиакустической схеме сохранять начальное состояние:

$$H(x, y, 0) = H_0 = const, \ u(x, y, 0) = v(x, y, 0) = 0.0$$
(5)

в последующие моменты времени t > 0.

При выбранных начальных данных в каждой ячейке Ω_{ij} компоненты векторов нормали линейных реконструкций базисных функций обращаются в ноль. Фоновые значения функций будут совпадать с начальными значениями. В результате вычисление интегральных потоков сводится к вычислению интегралов от фоновых составляющих. При этом фоновые составляющие потока массы тождественно равны нулю. Не ограничивая общности, рассмотрим разность потоков вдоль координатного направления x в балансном соотношении первой компоненты импульса:

$$\begin{split} IFI_{1,i}^{(x)} - IFI_{1,i-1}^{(x)} &= \left[\frac{1}{2}g(H_0 - \bar{B}_i)^2 \Delta y\tau_n - \frac{1}{2}g(H_0 - \bar{B}_{i-1})^2 \Delta y\tau_n\right] = \\ &= -\frac{1}{2}g(\bar{B}_i - \bar{B}_{i-1})\left(2H_0 - (\bar{B}_i + \bar{B}_{i-1})\right)\Delta y\tau_n = \\ &-g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{\bar{B}_i + \bar{B}_{i-1}}{2}\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n = -g(\bar{B}_i - \bar{B}_{i-1})\left(H_0 - \frac{1}{2}\left(\frac{B_{i,j-1} + B_{i,j}}{2} + \frac{B_{i-1,j-1} + B_{i-1,j}}{2}\right)\right)\Delta y\tau_n$$

Полученное выражение в точности совпадет с представленной выше аппроксимацией правой части данного балансного соотношения.

По аналогии можно показать, что разность потоков импульса вдоль координатного направления у в балансном соотношении второй компоненты импульса также совпадает с аппроксимацией правой части.

Таким образом, квазиакустическая схема позволяет сохранить начальное состояние (5) в последующие моменты времени

 $t = t_n, n = 1, 2, ...$

5. Выбор шага по времени

Построенная квазиакустическая схема является устойчивой при выполнении условия Куранта, которое в случае двухмерной ортогональной сетки принимает вид:

$$\tau_{n} = CFL * min\{\Delta t^{(x)}, \Delta t^{(y)}\}$$
$$\Delta t^{(x)} = \min_{\substack{1 \le i \le N_{x} \\ 1 \le j \le N_{y}}} \left\{ \frac{\Delta x}{\left| U_{i-1/2, j-1/2}^{n} \right| + \sqrt{g\left(H_{i-1/2, j-1/2}^{n} - B_{i-1/2, j-1/2}\right)}} \right\}$$
$$\Delta t^{(y)} = \min_{\substack{1 \le i \le N_{x} \\ 1 \le j \le N_{y}}} \left\{ \frac{\Delta y}{\left| V_{i-1/2, j-1/2}^{n} \right| + \sqrt{g\left(H_{i-1/2, j-1/2}^{n} - B_{i-1/2, j-1/2}\right)}} \right\},$$

где *CFL* – число Куранта-Фридрихса-Леви.

Отметим, что в процессе вычисления компоненты интегрального потока каждый блок малых возумщений за время τ_n не должен переместиться за пределы фоновой плоскости, в которой он расположен. В связи с этим для квазиакустической схемы значение числа Куранта не должно превышать 0.5.

6. Граничные условия

При проведении тестовых и модельных расчетов, результаты которых представлены в работе, использовались два типа граничных условий: твердая стенка и свободная граница. В случае твердой стенки на границе расчетной области ставятся условия непротекания для скорости и условие отражения для высоты уровня жидкости:

$$\frac{\partial H}{\partial \bar{n}} = 0, U_n = 0, \frac{\partial U_{\tau}}{\partial \bar{n}} = 0,$$

где U_n – нормальная компонента вектора скорости, U_{τ} – тангенциальная составляющая вектора скорости.

Для свободной границы используются условия сноса:

$$\frac{\partial H}{\partial \bar{n}} = 0, \frac{\partial U_n}{\partial \bar{n}} = 0, \frac{\partial U_\tau}{\partial \bar{n}} = 0$$

При постановке граничных условий в квазиакустической схеме применяются «фиктивные» ячейки. В случае твердой стенки значения функций высоты уровня жидкости и скоростей в «фиктивной» ячейке задаются следующим образом:

$$H_{out} = H_{int}, (U_n)_{out} = -(U_n)_{int}, (U_\tau)_{out} = (U_\tau)_{int},$$

где *int* и *out*– индексы внутренней и «фиктивной» ячеек соответственно. Для свободной границы:

$$H_{out} = H_{int}, (U_n)_{out} = (U_n)_{int}, (U_\tau)_{out} = (U_\tau)_{int}$$

Следует заметить, что для корректного вычисления потока функция рельефа дна в «фиктивной» ячейке задается также, как и в прилегающей к ней внутренней ячейке.

7. Результаты расчётов

7.1. Расчёт задачи о распаде разрыва над прямоугольной ступенькой

Для верификации описанной квазиакустической схем рассмотрим одномерную задачу о распаде разрыва над неровным дном в форме прямоугольной ступеньки. Начальные данные взяты из [29]:

$$H_L = 3.0, H_R = 4.0, U_L = 1.0, U_R = -4.0$$

Функция рельефа дна B(x) принимает вид:

$$B(x) = \begin{cases} B_L = 0.0, x < x_0 \\ B_R = 1.0, x \ge x_0 \end{cases}$$

где $x = x_0$ – положение ступеньки, совпадающее с разрывом начальных данных.

При выбранных начальных данных конфигурация решения состоит из двух гидродинамических прыжков, распространяющихся в обе стороны от ступеньки. Предполагая, что на ступеньке присутствует область стационарного скачка, на котором выполняются балансные соотношения массы и полной энергии:

$$(H_1 - B_L)U_1 = (H_1 - B_R)U_2 ,$$

$$H_1 + \frac{U_1^2}{2g} = H_2 + \frac{U_2^2}{2g}$$

где H_1 , U_1 – значения функций высоты уровня жидкости и скорости за фронтом, распространяющегося влево гидродинамического прыжка; H_2 , U_2 – значения функций высоты уровня жидкости и скорости за

фронтом, распространяющегося вправо гидродинамического прыжка; можно построить аналитическое решение задачи [29, 30, 31].

Расчет задачи проводился в области $\Omega = [0; 1]$. Разрыв в начальный момент времени располагался в $x_0 = 0.5$. Область Ω разбивалась на N = 200 расчетных ячеек. Число Куранта полагалось равным *CFL* = 0.3.

Ниже на рис. 7 представлены профили функций высоты уровня жидкости и скорости на момент времени t = 0.057 в сравнении с точным решением.

Рис.7. Расчет задачи о распаде разрыва над прямоугольной ступенькой: а) профиль функции *H*; б) профиль функции *U*.

Результаты расчетов показали, что решение, полученное по квазиакустической схеме, достаточно хорошо согласуется с точным

решением за фронтом гидродинамических прыжков. Фронты волн «размазываются» примерно на 4 расчетные ячейки. Следует отметить, что при построении численного решения в схеме не применяются лимитерные функции, искусственные регуляризаторы, а также разного рода надстроечные параметры.

Приведем также результаты расчета задачи о распаде разрыва с другими начальными данными:

$$H_L = 3.0, H_R = 5.0, U_L = U_R = 0.0$$

Функция рельефа дна B(x) и параметры расчетной области Ω выбирались такими же, как в задаче выше.

На рис. 8 представлено сравнение численного решения, состоящего из распространяющегося влево от ступеньки гидродинамического прыжка и волны разряжения справой стороны от ступеньки, которые стыкуются через стационарный скачок, с точным решением на момент времени t = 0.05876.

Рис. 8. Расчет задачи о распаде разрыва над прямоугольной ступенькой: а) профиль функции *H*; б) профиль функции *U*.

7.2 Распространение малого возмущения над неровным дном эллиптической формы

В качестве двухмерной тестовой задачи рассмотрим модельную задачу распространения малого возмущения высоты уровня жидкости в прямоугольной области $\Omega = [0; 2] \times [0; 1]$ с функцией рельефа дна вида:

$$B(x, y) = exp\{-5(x - 0.9)^2 - 50(y - 0.5)^2\}$$

В начальный момент времени в области Ω , кроме $x \in (0.05, 0.15)$, функция высоты уровня жидкости Н принимает постоянное значение равное 1.0, а в области $x \in (0.05, 0.15)$ полагаем равным 1.01. При этом в времени всюду вΩ все покоится. начальный момент Вдоль координатного направления x расчетная область разбивается на $N_x = 200$ ячеек, а вдоль y – на N_{y} = 100. Пренебрегаем трением жидкости о рельеф дна. На каждой границе области Ω поставим условия сноса (см. п. 6). Число Куранта полагаем равным CFL = 0.3. Для сравнения с решениями, полученными другими авторами, полагаем g = 1.0.

Ниже на рис. 9 приводятся трехмерные профили высоты уровня жидкости и отвечающие им линии уровня на последовательные моменты времени.

t = 0.6 (a)

t = 0.9 (б)

t = 1.2 (b)

Рис. 9. Распространение малого возмущения.

Возмущение функции высоты уровня жидкости, имеющее в начальный момент времени ступенчатую форму, сразу распадается на две волны: одна распространяется влево вдоль координатного направления x, а другая – вправо. К моменту времени t = 0.6 (см. рис. 9а) левая волна праткически полностью покинула границы области Ω . При этом изначально прямоугольный фронт волны, распространяющейся вправо, начинает искажаться по мере приближения к бугру. Когда фронт волны проходит над вершиной бугра, функция высоты уровня жидкости достигает своего максимального значения, что наблюдается в момент времени t = 0.9 (см. рис. 9б). Процесс прохождения волны через бугор изображен на рис. 9в при t = 1.2. По мере стекания с бугра наблюдается сложная волновая картина (см. рис. 9г). Можно также отметить постепенно выпрямление профиля волны (см. рис. 9д).

Представленные результаты расчетов хорошо согласуются с данными, полученными другими авторами [15, 32].

Заключение

В работе проведено описание применения квазиакустической схемы для численного решения двухмерных уравнений мелкой воды над неровным дном. Показано, что схема позволяет сохранить начальные данные:

$$H(x, y, 0) = H_0 = const, u(x, y, 0) = v(x, y, 0) = 0.0$$

в последующие моменты времени t > 0. Приведена верификация схемы на ряде одномерных и двухмерных тестовых задач. Полученные результаты продемонстрировали, что решение, полученное по квазиакустической схеме, достаточно хорошо согласуется с решениям, полученным другими авторами [15, 29, 32]. При этом в квазиакустической схеме не требуется применение лимитерных функций, искусственных регуляризаторов, а также различного рода надстроечных параметров, что, несомненно, можно отнести к достоинству схемы.

Литература

- 1. *Glaister P.* Approximate Riemann solutions of the shallow water equations. //ASCE Journal of Hydraulic Engineering. 1988. v. 26, № 3. pp. 293 – 306.
- Salmon R. Numerical solution of the two-layer shallow water equations with bottom topography.//Journal of Marine Research. 2002. v. 60. pp.605 – 638.
- 3. *Li P. W., Fan C. M.* Generalized finite difference method for twodimensional shallow water equations.//Engineering Analysis with Boundary Elements. 2017. v. 80. pp. 58 – 71.
- 4. *Altai H., Dreyfuss P.* Numerical solutions for 2D depth-averaged shallow water equations. // International Mathematical Forum. 2018. v. 13, № 2. pp. 79 90.
- Ahmad M. F., Sulaiman M. S. Deficiency of finite difference methods for capturing shock waves and wave propagation over uneven bottom seabed. //International Journal of Engineering & Technology. 2018. v. 7, № 3.28. pp. 97 – 101.
- 6. *Navon I.M.* Finite-element simulation of the shallow water equations model on a limited-area domain.//Applied Mathematical Modelling.1979. v. 3. pp.337-348.
- 7. *Kawahara M., Umetsu T.* Finite element method for moving boundary problems in river flow.//International journal for numerical methods in fluids. 1986. v. 6. pp. 365 386.
- 8. *Harnet E., Le Roux D.Y., Legat V., Deleersnijder E.* An efficient Eulerian finite element method for the shallow water equations.//Ocean Modelling. 2005. v. 10. pp. 115 136.
- 9. Zhang T., Fang F., Pain C. C., Maksimovic C., Feng P., Navon I. M., Bates

P. D. Application of a three-dimensional unstructured-mesh finite-element flooding model and comparison with two-dimensional approaches. //Water Resources Management. 2016. V. 30, № 7. pp. 823 – 841.

- 10. Azerad P., Guermond J.-L., Popov B. Well-balanced second-order approximation of the shallow water equation with continuous finite elements.//SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics. 2017. v. 55, № 6. pp. 3203 3224.
- 11. Guermond J.-L., De Luna M. Q., Popov B., Kees C. E., Farthing M. W. Well-balanced second-order finite element approximation of the shallow water equations with friction.//SIAM Journal for Scientific Computing, Society for Industrial and Applied Mathematics. 2018. v. 40, № 6. pp. 3873 3901.
- 12. Bermudez A., Vazquez M.E. Upwind methods for hyperbolic conservation laws with source terms.//Computers & Fluids. 1994. v. 23, № 8. pp. 1049-1071.
- Garcia-Navarro P., Vazquez M.E. On numerical treatment of the source terms in shallow water equations.//Computers & Fluids. 2009. v. 38. pp. 221 – 234.
- 14. *Toro E.F.* Shock-capturing methods for free–surface shallow flows. Wiliey, New York. 2001.
- Liang Q., Borthwick A.G.I. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography.//Computers & Fluids. 2009.
 v. 38. pp. 221 – 234.
- 16. *Yuxin H., Ningchuan Z., Yuguo P.* Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography.//Engineering Applications of Computational Fluid Mechanics. 2013. v. 7, № 1. pp. 40 54.
- 17. *Turan B., Wang K.-H.* An object-oriented overland flow solver for watershed flood inundation predictions: case study of Ulus basin, Turkey. //J. Hydrol. Hydromech. 2014. v. 62, № 3. pp. 209 217.
- 18. *Berthon C., Chalons C.* A fully well-balanced, positive and entropysatisfying Godunov-type method for the shallow-water equations. //Mathematics of Computation, American Mathematical Society. 2016. v. 85, № 299. pp. 1281–1307.
- 19. *Michel-Dansac V., Berthon C., Clain S., Foucher F.* A well-balanced scheme for the shallow-water equations with topography or Manning friction. //Journal of Computational Physics. 2017, v. 335. pp. 115–154.
- 20. *Kurganov A*. Finite-volume schemes for shallow-water equations.//Acta Numerica. 2018. pp. 289–351.
- Harten A., Lax P. D., Van Leer B. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws.//SIAM Review. 1983. v. 25, № 1.pp. 35-61.

- 22. *Toro E.F.* Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer. 1999, 645 p.
- 23. Годунов С.К. Разностный метод численного расчёта разрывных решений уравнений гидродинамики.//Мат. Сборник. 1959. Т.47, № 89, вып. 3. 271-306.
- 24. Абакумов М.В., Галанина А.М., Исаков В.А., Тюрина Н.Н., Фаворский А.П., Хруленко А.Б. Квазиакустическая схема для уравнений Эйлера газовой динамики.//Дифференциальные уравнения. 2011. Т. 47, № 8. 1092-1098.
- 25. Исаков В.А., Фаворский А.П. Квазиакустическая схема для уравнений Эйлера газовой динамики в случае двух пространственных измерений. //Мат. Моделирование. 2012. Т. 24, № 12. 55-59.
- 26. *Isakov V.A.* Application of a quasi-acoustic scheme to many-dimensional gas-dynamic problems.//Computational Mathematics and Modeling. 2014. v. 25, № 3. pp. 334 341.
- 27. *Isakov V.A.* Application of a quasi-acoustic scheme to solve shallow-water equations with an uneven bottom.//Computational Mathematics and Modeling. 2018. v. 29, № 3. Pp. 319 333.
- 28. Самарский А.А. Теория разностных схем. М.: Наука, 1977.
- 29. Петросян А.С. Дополнительные главы теории мелкой воды. М.: Ротапринт ИКИ РАН, 2014.
- 30. *Булатов О.В.* Аналитические решения и численные решения уравнений Сен-Венана для некоторых задач о распаде разрыва над уступом и ступенькой дна.//ЖВМ и МФ. 2014. Т. 54, № 1. 150-164.
- 31. *Bernetti R., Titarev V.A., Toro E.F.* Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry. //Journal of Computational Physics. 2008. v. 227, № 6. pp. 3212-3243.
- 32. *LeVeque R.J.* Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm.//Journal of Computational Physics. 1998. v. 146, № 1. pp. 346-365.