Ю. Н. Киселёв, С. М. Орлов

ИССЛЕДОВАНИЕ МОДИФИЦИРОВАННОЙ МОДЕЛИ «РОСТ» С ОСОБЫМИ РЕЖИМАМИ *

1. Введение

Изучается одномерная нелинейная задача оптимального управления

$$\begin{cases} \dot{z} = (1+z)u - z(1+z^{\gamma}), & z(0) = z_0 > 0, \\ L[u] = \omega_1 L_1 + \omega_2 L_2 \to \max_{u(\cdot)}, & 0 \leqslant u \leqslant 1, \end{cases}$$
(1)

где

$$L_1[u] = \int_0^T \left[1 + z^\gamma - u \right] \, dt, \quad L_2[u] = \int_0^T \frac{u}{z} \, dt, \tag{2}$$

Здесь z — одномерная фазовая переменная, u — скалярное управление, подчинённое геометрическому ограничению $u \in [0,1]$, T > 0 — заданная, «достаточно большая», длительность процесса управления, параметры ω_1, ω_2 — заданные неотрицательные числа, такие что $\omega_1 + \omega_2 = 1$, ν — заданный положительный коэффициент дисконтирования, параметр $\gamma \in (0,1)$.

2. Вилка для допустимых траекторий

В данном разделе приводятся некоторые технические результаты, важные для дальнейших построений.

Лемма 1. Любая допустимая траектория z(t) в задаче (1) удовлетворяет двойному неравенству

$$z_{-}(t) \leqslant z(t) \leqslant z_{+}(t), \ t \ge 0.$$
(3)

Нижняя граница $z_{-}(t)$ вилки (3) отвечает управлению $u(t) \equiv 0$ и является решением задачи Коши

$$\dot{z} = -z(1+z^{\gamma}), \ z(0) = z_0 > 0.$$

Верхняя граница $z_+(t)$ вилки (3) отвечает управлению $u(t) \equiv 1$ и является решением задачи Коши

$$\dot{z} = 1 - z^{\gamma+1}, \ z(0) = z_0 > 0.$$

^{*}Работа выполнена при поддержке РФФИ (проект 12-01-00175) и Программы государственной поддержки ведущих научных школ (НШ-6512.2012.1).

Функция $z_{-}(t)$ определяется явной формулой

$$z_{-}(t) = \left[\left(1 + z_{0}^{-\gamma} \right) e^{\gamma t} - 1 \right]^{-\frac{1}{\gamma}}, \ t \ge 0.$$

Она монотонно убывает с ростом времени t и $\lim_{t o +\infty} z_-(t) = 0$.

При $z_0 = 1$ функция $z_+(t)$ тождественно равна единице, а при $z_0 \neq 1$ функция $z_+(t)$ является решением неявного уравнения

$$\int_{z_0}^{z_+(t)} \frac{d\zeta}{1-\zeta^{\gamma+1}} = t,$$

причём, при $z_0 > 1$ функция $z_+(t)$ убывает, а при $z_0 \in (0,1)$ функция $z_+(t)$ возрастает с ростом времени t, при этом всегда имеет место предельное равенство $\lim_{t\to+\infty} z_+(t) = 1$. Множество достижимости $Z(\tau)$ управляемого объекта в момент времени $\tau \ge 0$ представляет собой отрезок $Z(\tau) = [z_-(\tau), z_+(\tau)]$, концами которого служат границы вилки (3).

На рис. 1 показан график нижней границы вилки (3). На рис. 2 показаны графики верхней границы вилки (3) при $z_0 \in (0,1)$, $z_0 = 1$, $z_0 > 1$. На

Рис. 1. График нижней границы вилки Рис. 2. Графики верхней границы вилки

рис. 3–5 даётся геометрическая интерпретация свойств множества достижимости $Z(\tau)$.

3. Вычисление возможных особых режимов

Функция Гамильтона-Понтрягина для задачи (1)

$$K(z,\psi,u) = \omega_1 [1 + z^{\gamma} - u] + \omega_2 \frac{u}{z} + \psi [(1+z)u - z(1+z^{\gamma})]$$

Рис. 3. Множество достижимости Z(t) Рис. 4. Множество достижимости Z(t) при $z_0 \in (0,1)$ при $z_0 = 1$

Рис. 5. Множество достижимости Z(t) при $z_0 > 1$

может быть представлена в виде

$$K = u \pi + (1 + z^{\gamma})(\omega_1 - \psi z),$$
(4)

где функция переключения π определяется равенством

$$\pi = \pi(z, \psi) \equiv \frac{\omega_2}{z} - \omega_1 + (1+z)\psi.$$
 (5)

Сопряжённое уравнение $\dot{\psi} = -K_z'$ принимает вид

$$\dot{\psi} = -\omega_1 \gamma z^{\gamma - 1} + \frac{\omega_2 u}{z^2} + \psi \left[-u + 1 + (\gamma + 1) z^{\gamma} \right], \ \psi(T) = 0.$$
(6)

Из условия максимума $K \Longrightarrow \max_{u \in [0,1]}$ находим максимизатор функции (4)

$$u_* = \operatorname*{argmax}_{u \in [0,1]} K(z, \psi, u) = h(\pi), \ \pi \neq 0,$$

где $h(\cdot)$ — функция Хевисайда. При $\pi = 0$ каждая точка отрезка [0,1] является максимизатором. Анализ тождества

$$\Pi(t) = \pi(z(t), \psi(t)) \equiv 0 \ \forall t \in (\alpha, \beta), \ \alpha < \beta,$$
(7)

и его дифференциальных следствий позволяет найти возможный особый режим задачи (1):

$$z = z_{sng} \in (0, 1), \quad u = u_{sng} \in (0, 1).$$
 (8)

Действительно, дифференцирование по времени *t* тождества (7) с учётом (5) даёт

$$\dot{z}\left(-\frac{\omega_2}{z^2}+\psi\right) + (1+z)\dot{\psi} \equiv 0$$

откуда, в силу дифференциального уравнения движения задачи (1) и сопряжённого уравнения (6), получаем

$$\left(-\frac{\omega_2}{z^2} + \psi \right) \left[(1+z)u - z(1+z^{\gamma}) \right] + + (1+z) \left[-\omega_1 \gamma z^{\gamma-1} + \frac{\omega_2 u}{z^2} + \psi \left[-u + 1 + (\gamma+1)z^{\gamma} \right] \right] \equiv 0,$$

ИЛИ

$$\frac{\omega_2(1+z^{\gamma})}{z} - \omega_1(1+z)\gamma z^{\gamma-1} + \psi \left[1 + (\gamma+1)z^{\gamma} + \gamma z^{\gamma+1}\right] \equiv 0.$$

Дальнейшие преобразования с использованием вытекающей из (7), (5) формулы

$$\psi \equiv \frac{\omega_1 z - \omega_2}{z(1+z)}$$

дают

$$(\omega_1 + \omega_2) \frac{(\gamma - 1)z - z^{1 - \gamma} + \gamma}{z^{1 - \gamma}(1 + z)} \equiv 0.$$

Учитывая, что $\omega_1 + \omega_2 = 1$, получим $(\gamma - 1)z - z^{1-\gamma} + \gamma \equiv 0$. Рассмотрим функцию $g(z,\gamma) = (\gamma - 1)z - z^{1-\gamma} + \gamma$ и зафиксируем некоторое $\bar{\gamma} \in (0,1)$. Обозначим $f(z) = g(z,\bar{\gamma})$. Справедливы следующие свойства:

$$f(0) = \bar{\gamma} > 0, \ f(1) = 2(\bar{\gamma} - 1) < 0,$$

$$f'(z) = (\bar{\gamma} - 1)(1 + z^{-\bar{\gamma}}) < 0 \quad \forall z > 0$$

$$f''(z) = (1 - \bar{\gamma})\bar{\gamma}z^{-\bar{\gamma} - 1} > 0 \quad \forall z > 0.$$
(9)

Поэтому существует единственный корень z_{sng} функции f(z) на интервале $(0, +\infty)$, причём справедливо включение $z_{sng} \in (0, 1)$. Таким образом, вдоль особого режима траектория сохраняет постоянное значение z_{sng} . Следовательно, на особом участке в силу дифференциального уравнения движения имеем $0 \equiv (1 + z_{sng})u - z_{sng}(1 + z_{sng}^{\gamma})$, откуда находится особое значение управления

$$u \equiv \frac{z_{sng}(1 + z'_{sng})}{1 + z_{sng}} = u_{sng} \in (0, 1).$$

Соотношения (8) для возможного особого режима обоснованы. Пока вопрос о существовании особого режима и об особом участке времени (α, β) остаётся открытым.

С учётом (5) и условия трансверсальности $\psi|_{t=T} = 0$, для функции переключения π можно записать следующее соотношение

$$\pi\big|_{t=T} = \frac{\omega_2}{z(T)} - \omega_1. \tag{10}$$

Соотношение (10) позволяет определить оптимальное управление на финальном участке времени и будет исследовано ниже.

4. Замечания о вычислении параметра z_{snq}

Рассмотрим полученное выше уравнение

$$g(z,\gamma) \equiv -(1-\gamma)z - z^{1-\gamma} + \gamma = 0 \tag{11}$$

для вычисления z_{sng} . График функции $g(z, \gamma)$ при $\gamma = \frac{1}{2}$ представлен ниже на рисунке 6. Обозначим через $z = z_{sng}(\gamma)$ функцию, которая для каждого

Рис. 6. График функции $g(z, \frac{1}{2})$

 $\gamma \in (0,1)$ ставит в соответствие решение z_{sng} уравнения (11). Выше показано, что $z_{sng}(\gamma) \in (0,1)$.

4.1. Исследование функции $z_{sng}(\gamma)$

Рассмотрим функцию, обратную к функции $z = xe^x$ на луче $[-e^{-1}, +\infty)$, и обозначим её $W_0(z)$. Эта функция есть однозначная ветвь W-функции Ламберта [15]. Докажем следующую лемму:

Лемма 2. Функция $z_{snq}(\gamma)$ обладает следующими свойствами:

- 1. $z_{sng}(\gamma)$ возрастает на интервале (0,1);
- 2. $\lim_{\gamma \to 0} z_{sng}(\gamma) = 0;$
- 3. $\lim_{\gamma \to 1} z_{sng}(\gamma) = W_0(e^{-1}).$

Доказательство. Рассмотрим уравнение (11):

$$z^{1-\gamma} + (1-\gamma)z - \gamma = 0.$$
 (12)

Предположим, что существует функция $\gamma(z)$, определённая на интервале $(0, W_0(e^{-1}))$, являющаяся обратной к функции $z_{sng}(\gamma)$. Если доказать, что

- 1. $\gamma(z)$ возрастает на интервале $(0, W_0(e^{-1}));$
- 2. $\lim_{z \to 0} \gamma(z) = 0;$
- 3. $\lim_{z \to W_0(e^{-1})} \gamma(z) = 1$,

тогда лемма будет доказана. Покажем это.

Найдём функцию $\gamma(z)$. Произведя в уравнении (12) замену переменных $\gamma=1-\frac{1}{z+1}+y$, получим

$$z^{\frac{1}{z+1}-y} + \left(\frac{1}{z+1} - y\right)(z+1) - 1 = 0,$$

ИЛИ

$$z^{\frac{1}{z+1}-y} = (z+1)y,$$

ИЛИ

$$yz^y = \frac{z^{\frac{1}{z+1}}}{z+1}.$$

Запишем решение этого уравнения в виде

$$y = \frac{W_0\left(\frac{z^{\frac{1}{z+1}}\ln z}{\ln z}\right)}{\ln z}$$

и, вернувшись к старым переменным, получим

$$\gamma(z) = \frac{z}{z+1} + \frac{W_0\left(\frac{z^{\frac{1}{z+1}}\ln z}{z+1}\ln z\right)}{\ln z}.$$
(13)

Рассмотрим функцию $f_1(z) = \frac{z^{\frac{1}{z+1}}}{z+1} \ln z$. Покажем, что эта функция убывает и меньше нуля на интервале $(0, W_0(e^{-1}))$. Рассмотрим функцию $f_2(x) = xe^x$

и функцию $f_3(z) = \frac{\ln z}{z+1}$. Легко показать, что $f_1(z) = f_2(f_3(z))$. Верно, что $f_3(z) < 0$ на $(0, W_0(e^{-1}))$, $\lim_{z\to 0} f_3(z) = -\infty$ и $f_3(W_0(e^{-1})) = -1$. Её производная $f'_3(z) = \frac{1}{z(z+1)} - \frac{\ln z}{(z+1)^2}$ больше нуля на $(0, W_0(e^{-1}))$. То есть функция $f_3(z)$ возрастает при $z \in (0, W_0(e^{-1}))$. Можно показать, что функция $f_2(x)$ убывает на интервале $(-\infty, -1)$ и меньше нуля. Следовательно, композиция функций $f_1(z) \equiv f_2(f_3(z))$ убывает и меньше нуля на $(0, W_0(e^{-1}))$. И легко убедиться, что $\lim_{z\to 0} f_1(z) = 0$ и $f_1(W_0(e^{-1})) = -e^{-1}$.

Докажем последовательно все пункты леммы применительно к функции $\gamma(z)$. Из исследования выше с учётом того, что $W_0(x)$ возрастает и меньше нуля на $[-e^{-1}, 0)$, вытекает, что $W_0(f_1(z))$ убывает и меньше нуля на этом полуинтервале. Функция $\frac{1}{\ln z}$ тоже убывает и меньше нуля на интервале $(0, W_0(e^{-1}))$. Тогда функция $\frac{W_0(f_1(z))}{\ln z}$ возрастает и больше нуля на интервале $(0, W_0(e^{-1}))$. Функция $\frac{z}{z+1}$ возрастает на $(0, W_0(e^{-1}))$. Тогда функция $\frac{z}{z+1}$ возрастает на $(0, W_0(e^{-1}))$. Тогда функция $\gamma(z) = \frac{z}{z+1} + \frac{W_0(f_1(z))}{\ln z}$ возрастает на $(0, W_0(e^{-1}))$. Первое утверждение леммы доказано.

Второе утверждение. Когда z стремится к нулю справа, то первое слагаемое в функции $\gamma(z)$ стремится к нулю, $f_1(z)$ стремится к нулю, откуда следует, что $W(f_1(z))$ тоже стремится к нулю; функция $\frac{1}{\ln z}$ тоже стремится к нулю. Значит, $\lim_{z \to 0} \gamma(z) = 0$, и второе утверждение доказано.

Третье утверждение. Так как все подфункции функции $\gamma(z)$ существуют и непрерывны в точке $W_0(e^{-1})$, то достаточно найти значение $\gamma(W_0(e^{-1}))$. Найдём его, учитывая что $\ln W_0(e^{-1}) = -(W_0(e^{-1})+1)$ и $W_0(f_1(W_0(e^{-1}))) = -1$:

$$\gamma(W_0(e^{-1})) = \frac{W_0(e^{-1})}{W_0(e^{-1}) + 1} - \frac{1}{\ln W_0(e^{-1})} = 1 - \frac{1}{W_0(e^{-1}) + 1} - \frac{1}{\ln W_0(e^{-1})} = 1 + \frac{1}{\ln W_0(e^{-1})} - \frac{1}{\ln W_0(e^{-1})} = 1.$$

Все утверждения леммы для $\gamma(z)$ обоснованы. Тогда лемма справедлива и для $z_{sng}(\gamma)$. Лемма полностью доказана.

4.2. Интерполяция функции $z_{sng}(\gamma)$

В работах [8], [9] рассматривался частный случай, когда $\gamma = \frac{1}{2}$, и уравнение $g(z, \frac{1}{2}) = 0$ сводилось к квадратному. В случае, когда $\gamma = \frac{1}{3}$, функцию $g(z, \frac{1}{3})$ можно представить в виде $g(z, \frac{1}{3}) = -\frac{2}{3}(z^{\frac{1}{3}} - \frac{1}{2})(z^{\frac{1}{3}} + 1)^2$, то есть $z_{sng} = \frac{1}{8}$. В среде Марle удаётся найти корень уравнения $g(z, \gamma) = 0$ при некоторых значениях параметра γ . Ниже представлена таблица посчитанных аналитически значений функции $z_{sng}(\gamma)$ (значение $\gamma = 0.9999$ было посчитано численно методом Чебышёва, оно используется ниже для приближения функции $z_{sng}(\gamma)$ интерполяционными полиномами Лагранжа):

γ	точное значение $z_{sng}(\gamma)$	приближённое значение $z_{sng}(\gamma)$		
0	0	0.00000000		
$\frac{1}{5}$	$\frac{\frac{203}{3072} - \frac{675 + 100\sqrt{6}}{3072(135 + 60\sqrt{6})^{1/3}} + \\ + \frac{3675 + 1800\sqrt{6}}{3072(135 + 60\sqrt{6})^{2/3}}$	0.081611694		
$\frac{1}{3}$	$\frac{1}{8}$	0.125000000		
$\frac{1}{2}$	$(\sqrt{2}-1)^2$	0.171572876		
$\frac{3}{5}$	$\frac{-10\cdot10^{2/3}+5\cdot10^{1/3}+38}{12}$	0.196357092		
$\frac{2}{3}$	$\frac{-3(1+\sqrt{2})^{2/3}+2(1+\sqrt{2})^{1/3}+3}{(1+\sqrt{2})^{1/3}}$	0.211785085		
0.9999	-	0.278446693		

Функция $\tilde{z}_{sng}(\gamma)$, являющаяся приближением функции $z_{sng}(\gamma)$ с помощью интерполяционного многочлена Лагранжа, имеет вид

$$\tilde{z}_{sng}(\gamma) = -0.1334972914\gamma^6 + 0.4761485984\gamma^5 - 0.7195948597\gamma^4 + 0.6430355190\gamma^3 - 0.4687531891\gamma^2 + 0.4811253273\gamma$$
(14)

Ниже показан график функции $z_{sng}(\gamma)$, полученный в Maple с использованием стандартной функции solve, и график разности между этой функцией и функцией (14).

При поиске значений z_{sng} при различных $\gamma \in (0,1)$ можно обратиться к численным методам решения нелинейных уравнений. В рамках проведённого исследования были использованы метод Ньютона [14], методы различных порядков сходимости, полученные из ряда Чебышёва [11]–[13], и метод продолжения по параметру [7].

4.3. Метод Ньютона

Зафиксируем некоторое $\bar{\gamma} \in (0,1)$ и рассмотрим итерационный процесс

$$z^{k+1} = z^k - \frac{f(z^k)}{f'(z^k)}, \quad k = 0, 1, 2, \dots$$
 (15)

На отрезке [0,1] функция f(z) монотонно убывает и выпукла, значит, выбирая в качестве начального приближения точку отрезка [0,1], которая лежит левее корня уравнения (нельзя брать в качестве начального приближения левую границу этого отрезка, так как функция f'(z) не определена при z = 0), можно утверждать, что итерационный процесс (15) монотонно сходится к решению уравнения f(z) = 0.

Выбирать начальное приближение z^0 для метода Ньютона можно разными способами. Один из них следующий: взять произвольную точку $z_0^0 \in (0,1)$ и построить последовательность $z_n^0 = \frac{z_0^0}{2^n}, n = 1, 2, ...$ В силу свойств функции f(z) существует такой номер N, что для всех номеров $n \ge N$ выполнено неравенство $f(z_n^0) > 0$. В качестве начального приближения берётся любой элемент последовательности с номером, большим либо равным N.

Другой способ заключается в поиске начального приближения как некоторой функции $z^0 = z^0(\gamma)$, зависящей от параметра γ . Необходимо выполнение условия $z^0(\gamma) > 0 \quad \forall \gamma \in (0,1)$. Рассмотрим функцию $g(z,\gamma)$. При численных вычислениях в среде Maple экспериментальным путём было установлено, что $g(\frac{\gamma}{4},\gamma) > 0 \quad \forall \gamma \in (0,1)$, и начальным приближением можно выбрать $z^0 = \frac{\gamma}{4}$. Строгое доказательство этого факта остаётся одной из дальнейших тем исследования авторов. Ниже на рис. 9–12 показаны графики функций $g_1(\gamma) = g(\gamma, \gamma)$, $g_2(\gamma) = g(\frac{\gamma}{2}, \gamma)$, $g_3(\gamma) = g(\frac{\gamma}{3}, \gamma)$, $g_4(\gamma) = g(\frac{\gamma}{4}, \gamma)$.

4.4. Ряд Чебышёва для уравнения f(z) = 0 и численные методы

Выберем такое число $\alpha \in (0,1)$, что корень уравнения f(z) = 0 лежит правее α . Это всегда можно сделать (см. соображения выше). Для корня z_{snq} уравнения

$$f(z) = 0, \quad z \in [\alpha, 1]$$

введём ряд Чебышёва

$$z_{sng} = z + \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} Q_{f'(z)}^{k-1} \left[\frac{1}{f'(z)} \right] f^k(z) \equiv \Phi(z), \quad z \in [0,1],$$
(16)

где $Q_{f'(z)}^{k-1}$ — степень дифференциального оператора

$$Q_{f'(z)}[y] = \frac{1}{f'(z)} \frac{d}{dz}[y(z)]$$

Рис. 9. График функции $g_1(\gamma)=g(\gamma,\gamma)$

Рис. 10. График функции $g_2(\gamma) = g(rac{\gamma}{2},\gamma)$

Рис. 11. График функции $g_3(\gamma) = g(\frac{\gamma}{3}, \gamma)$ Рис. 12. График функции $g_4(\gamma) = g(\frac{\gamma}{4}, \gamma)$

Первый численный метод нахождения корня z_{sng} заключается в под-счёте частичных сумм ряда Чебышёва $\Phi(z)$

$$\varphi_m(z) = z + \sum_{k=1}^m \frac{(-1)^k}{k!} Q_{f'(z)}^{k-1} \left[\frac{1}{f'(z)}\right] f^k(z), \quad m = 1, 2, \dots$$

в произвольной точке $z^0 \in (0,1)$ (корнем полагается значение $\varphi_m(z^0)$) до остановки по критерию останова (например, $|f(\varphi_m(z^0))| < \varepsilon$ или $|\varphi_m(z^0) - \varphi_{m-1}(z^0)| < \varepsilon$). Другой численный метод заключается в запуске итерационного процесса $z^k = \varphi_m(z^{k-1})$, $k = 1, 2, \ldots$, при произвольном $z^0 \in (0,1)$ и фиксированном $m \ge 1$, который имеет порядок сходимости m + 1. Когда m = 1, этот численный метод есть метод Ньютона и имеет квадратичную скорость сходимости.

Ниже показаны графики частичных сум
м $\varphi_m(z)$ при $m=1,\,2,\,3,\,4$ и $\gamma=\frac{1}{2}\,.$

Рис. 13. Графики функций $\varphi_m(z)$ при m = 1, 2, 3, 4

4.5. Численные эксперименты

В среде Maple были проведены численные эксперименты по нахождению z_{sng} описанными выше численными методами. С помощью этого пакета можно находить слагаемые ряда Чебышёва последовательно в символьной форме. Ниже представлен явный вид частичных сумм ряда Чебышёва φ_1, φ_2 :

$$\varphi_1(z) = z - \frac{f(z)}{f'(z)} = \frac{\gamma z (1 - z^{\gamma - 1})}{(\gamma - 1)(1 + z^{\gamma})}$$

$$\begin{split} \varphi_2(z) &= z - \frac{f(z)}{f'(z)} - \frac{f''(z)f^2(z)}{2(f'(z))^3} = \\ &= \frac{\gamma z(z^{-2+2\gamma}\gamma^2 + z^{2\gamma}(\gamma^2 - 1) + z^{-1+2\gamma}(2\gamma^2 - 6\gamma + 4) + z^{-1+\gamma}(-4\gamma + 2))}{2(\gamma - 1)^2(1 + z^{\gamma})^3} + \\ &+ \frac{\gamma z(z^{\gamma}(2\gamma - 2) + z^{-1+3\gamma}(-2\gamma + 2) + 2\gamma - 1))}{2(\gamma - 1)^2(1 + z^{\gamma})^3}. \end{split}$$

4.5.0.1. Случай $\gamma = \frac{1}{2}$ Для $\gamma = \frac{1}{2}$ имеется аналитическое решение $z_{sng} = (\sqrt{2}-1)^2$. Первым численным методом были получены следующие результаты. Была рассмотрена последовательность частичных сумм $\varphi_m(\frac{1}{2})$ и последовательность частичных сумм $\varphi_m(\frac{1}{2})$ и последовательность $\varphi_m(\frac{1}{3})$. Отличие между $\varphi_{11}(\frac{1}{2})$ и z_{sng} начинается в 7 знаке после запятой, а отличие между $\varphi_{11}(\frac{1}{3})$ и z_{sng} — в 10 знаке.

4.5.0.2. Случай $\gamma = \frac{1}{3}$ Для $\gamma = \frac{1}{3}$ (в этом случае $z_{sng} = \frac{1}{8}$ первым численным методом были получены следующие результаты:

$$\begin{aligned} |\varphi_{11}(\frac{1}{2}) - z_{sng}| &\leq 2 \cdot 10^{-5}; \\ |\varphi_{11}(\frac{1}{3}) - z_{sng}| &\leq 4 \cdot 10^{-6}. \end{aligned}$$

Оказалось, что подсчёт частичных сумм может занимать довольно продолжительное время, в силу сложности вычисления производных. При $\gamma = \frac{1}{3}$ подсчёт $\varphi_{11}(\frac{1}{3})$ занял около 20 секунд, а ошибка вычисления z_{sng} оказалась уже в 6 знаке после запятой. В Марle функция $\varphi_m(z)$ задавалась в операторном виде:

f:=(z,g)->(g-1)*z-z^(1-g)+g: # функция f(z) G:=a->unapply(diff(a(z,g),z)/ /diff(f(z,g),z),z,g): # оператор Q phi:=(m,z,g)->z+sum((-1)^k/k!* *(G@@(k-1))(1/D[1](f))(z,g)* *f(z,g)^k,k=1..m): # функция phi_m

Для вычисления $\varphi_{11}(\frac{1}{3})$ при $\gamma = \frac{1}{3}$ вызывалась функция phi(11,1/3,1/3). Обратимся ко второму методу вычислений и повторим, что он охватывает и метод Ньютона при m = 1. Итерационная схема второго метода порядка m + 1 имеет вид $z^k = \varphi_m(z^{k-1})$, $k = 1, 2, \ldots$. Параметр z^0 необходимо задать. Ниже в таблице представлены оценки ошибок вычислений на каждом шаге при $\gamma = \frac{1}{2}$. Начальное приближение было выбрано $z^0 = \frac{\gamma}{4} = \frac{1}{8}$. Ошибка k-й итерации метода (m + 1)-го порядка вычислялась как $|\varphi_m(z^{k-1}) - z_{sng}|$ и это число оценивается сверху числом из таблицы.

№ итерации Порядок метода	2	3	4	5
1	$3 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	$8 \cdot 10^{-6}$	$5 \cdot 10^{-7}$
2	$8 \cdot 10^{-6}$	$2 \cdot 10^{-12}$	$3 \cdot 10^{-21}$	$3 \cdot 10^{-32}$
3	$7 \cdot 10^{-11}$	$4 \cdot 10^{-36}$	$3 \cdot 10^{-83}$	$4 \cdot 10^{-159}$
4	$4 \cdot 10^{-21}$	$6 \cdot 10^{-107}$	$4 \cdot 10^{-331}$	$9 \cdot 10^{-793}$

Теперь приведём пример вычисления z_{sng} , когда его точное значение неизвестно. Пусть $\gamma = \frac{3}{4}$. Начальное приближение было выбрано $z^0 = \frac{\gamma}{4} = \frac{3}{16}$. Ошибка k-й итерации метода (m+1)-го порядка вычислялась как $|f(\varphi_m(z^{k-1}))|$ и это число оценивается сверху числом из таблицы.

№ итерации Порядок метода	2	3	4	5
1	$3 \cdot 10^{-3}$	$3 \cdot 10^{-6}$	$3 \cdot 10^{-6}$	10^{-7}
2	$8 \cdot 10^{-6}$	$2 \cdot 10^{-18}$	$3 \cdot 10^{-23}$	$6 \cdot 10^{-36}$
3	$8 \cdot 10^{-11}$	$5 \cdot 10^{-55}$	$4 \cdot 10^{-90}$	$3 \cdot 10^{-177}$
4	$7 \cdot 10^{-21}$	$2 \cdot 10^{-164}$	$5 \cdot 10^{-363}$	$3 \cdot 10^{-884}$

С точностью до 20 знака после запятой $z_{sng}=0.22998062971263062672$ при $\gamma=\frac{3}{4}$.

Видно, что итерационные методы второго типа гораздо более эффективны, чем первый метод, и работают очень быстро.

4.6. Метод продолжения по параметру

Обратимся к методу продолжения по параметру [7]. Будем искать решение уравнения f(z) = 0 при $\gamma = \gamma^* \in (0,1)$. Пусть мы знаем корень \bar{z}_{sng} при $\gamma = \bar{\gamma}$. Тогда рассмотрим функцию $g(z,\gamma)$. Знаем, что $g(\bar{z}_{sng},\bar{\gamma}) = 0$, требуется решить уравнение $g(z,\gamma^*) = 0$ относительно z. Составим задачу Коши для метода продолжения по параметру:

$$\begin{cases} \frac{d}{d\gamma}g(z(\gamma),\gamma) \equiv z(\gamma) + (\gamma-1)z'(\gamma) - \\ -z(\gamma)^{1-\gamma} \left(-\ln z(\gamma) + (1-\gamma)\frac{z'(\gamma)}{z(\gamma)} \right) + 1 = 0 \\ z(\bar{\gamma}) = \bar{z}_{sng}. \end{cases}$$

Пусть $z(\gamma), \gamma \in [\min(\bar{\gamma}, \gamma^*), \max(\bar{\gamma}, \gamma^*)]$ — её решение. Тогда $z(\gamma^*)$ является корнем уравнения $g(z, \gamma^*) = 0$.

В среде Maple были проведены численные эксперименты с использованием метода продолжения по параметру. Для решения задачи Коши использовался метод Рунге-Кутта-Фельберга (он по умолчанию работает в функции dsolve). Параметры метода (abserr=1e-6, relerr=1e-5) тоже были взяты по умолчанию. Для $\gamma^* = \frac{3}{4}$, $\bar{\gamma} = \frac{1}{2}$ было посчитано $z(\gamma^*) = 0.22998054220403698006$ и $|g(z(\gamma^*), \gamma^*)| < 9 \cdot 10^{-8}$.

При увеличении точности метода (abserr=1e-10, relerr=1e-9) результаты улучшились:

Для $\gamma^* = \frac{3}{4}, \ \bar{\gamma} = \frac{1}{2}$ было посчитано $z(\gamma^*) = 0.22998062971182183335$ и $|g(z(\gamma^*), \gamma^*)| < 9 \cdot 10^{-13}$. Для $\gamma^* = \frac{3}{4}, \ \bar{\gamma} = \frac{1}{3}$ было посчитано $z(\gamma^*) = 0.22998062963862954552$ и $|g(z(\gamma^*), \gamma^*)| < 8 \cdot 10^{-11}$.

4.7. График функции $z_{sng}(\gamma)$

Ниже показан график функции $z_{sng}(\gamma)$, полученный в среде Maple с помощью функции solve. Было посчитано $z_{sng}(0.9999999999999999) =$

Рис. 14. График функции $z_{sng}(\gamma)$

= 0.278464542761073622165849234544 с точностью до 30 знака после запятой методом второго типа 5 порядка.

5. Построение решения задачи (1) на основе специального интегрального представления функционала

Из дифференциального уравнения задачи (1) выразим управление u через z и \dot{z} :

$$u = \frac{z(1+z^{\gamma}) + \dot{z}}{1+z}.$$
(17)

Подстановка выражения (17) в функционал L даёт

$$L = \omega_1 \int_0^T \left[1 + z^\gamma - \frac{z(1+z^\gamma) + \dot{z}}{1+z} \right] dt + \omega_2 \int_0^T \frac{z(1+z^\gamma) + \dot{z}}{z(1+z)} dt =$$

$$= \int_0^T \frac{1+z^\gamma}{1+z} dt + \omega_2 \ln \frac{z(T)}{z_0} + \ln \frac{1+z_0}{1+z(T)}.$$
(18)

Введём в рассмотрение функцию

$$W(z) = \frac{1 + z^{\gamma}}{1 + z}.$$
 (19)

Тогда функционал (18) допускает следующее представление

$$L = \int_{0}^{T} W(z(t)) dt + \omega_2 \ln \frac{z(T)}{z_0} + \ln \frac{1 + z_0}{1 + z(T)},$$
(20)

в котором интеграл не содержит управления.

Лемма 3. Функция (19) достигает максимального значения при *z* ≥ 0 в единственной точке

$$z_* = \operatorname*{argmax}_{z \ge 0} W(z) \equiv z_{sng} \in (0, 1).$$

Доказательство. Имеем $W(0) = 1, W(+\infty) = 0, W(z) > 0 \forall z > 0.$ Про-изводная функции (19)

$$W'(z) = \frac{(\gamma - 1)z - z^{1 - \gamma} + \gamma}{z^{1 - \gamma}(1 + z)^2}$$

имеет единственный положительный корень

$$z = z_{sng} \in (0, 1)$$

и обладает свойствами

$$\begin{cases} W'(z) = 0 & \text{при } z = z_{sng}, \\ W'(z) > 0 & \text{при } 0 < z < z_{sng}, \\ W'(z) < 0 & \text{при } z_{sng} < z < +\infty. \end{cases}$$
(21)

Эти свойства можно доказать, используя рассуждения про f(z) выше. Соотношения (21) приводят к обоснованию леммы 2. График функции (19) показан на рис. 15.

Рис. 15. График функции W(z)

Наряду с описанным ранее множеством достижимости (в прямом времени) $Z(t) = [z_{-}(t), z_{+}(t)]$ рассмотрим для объекта

$$\dot{z} = (1+z)u - z(1+z^{\gamma}), \quad z\Big|_{t=T} = z_1$$

множество достижимости (в обратном времени)

$$Y(t, z_1) = [y_{-}(t, z_1), y_{+}(t, z_1)], \quad t \leq T,$$

нижняя граница $y_{-}(t, z_{1})$ отвечает управлению $u(t) \equiv 1$, верхняя граница $y_{+}(t, z_{1})$ — управлению $u(t) \equiv 0$. Функция $y_{+}(t, z_{1})$ определена при $t \leq T$ на полуинтервале $(\bar{t}_{+}, T]$, функция $y_{-}(t, z_{1})$ определена при $t \leq T$ на полуинтервале $(\bar{t}_{-}, T]$. Если $\bar{t}_{+} < 0$, то полагаем

$$x_{+}(t, z_{1}) = \min\{z_{+}(t), y_{+}(t, z_{1})\},\$$

иначе

$$x_{+}(t, z_{1}) = \begin{cases} z_{+}(t), & 0 \leq t \leq \bar{t}_{+}, \\ \min\{z_{+}(t), y_{+}(t, z_{1})\}, & \bar{t}_{+} < t \leq T. \end{cases}$$

Если $\bar{t}_- < 0$, то полагаем

$$x_{-}(t, z_{1}) = \max\{z_{-}(t), y_{-}(t, z_{1})\},\$$

иначе

$$x_{-}(t, z_{1}) = \begin{cases} z_{-}(t), & 0 \leq t \leq \bar{t}_{-}, \\ \max\{z_{-}(t), y_{-}(t, z_{1})\}, & \bar{t}_{-} < t \leq T. \end{cases}$$

Введём обозначение

$$X(t, z_1) = [x_-(t, z_1), x_+(t, z_1)], \quad t \in [0, T].$$

Ясно, что любая допустимая траектория z(t) задачи (1) при дополнительном условии $z(T) = z_1 \in Z(T)$ удовлетворяют включению

$$z(t) \in X(t, z_1), \quad t \in [0, T]$$

(геометрическую интерпретацию последнего включения и свойств множества $X(t, z_1)$ даёт рис. 16). Тогда оптимальную траекторию задачи (1) с дополни-

Рис. 16. Вид множества $X(t, z_1)$

тельным условием $z(T) = z_1 \in Z(T)$ можно представить в форме

$$z_{op}(t, z_1) = \underset{\zeta \in X(t, z_1)}{\operatorname{argmax}} W(\zeta), \tag{22}$$

а оптимальное значение функционала L имеет вид

$$\Phi_{op}(z_1) = \int_0^T W(z_{op}(t, z_1)) dt + \omega_2 \ln \frac{z_1}{z_0} + \ln \frac{1 + z_0}{1 + z_1}.$$

Следовательно, правый конец z_1 оптимальной траектории в задаче (1) можно записать в форме

$$z_1^* = \operatorname*{argmax}_{z_1 \in Z(T)} \Phi_{op}(z_1).$$

Исследуем выражение (10) для определения оптимального управления на конечном участке времени. Из равенства (22) вытекает, что при достаточно большой длительности процесса управления *T* (когда оптимальная траектория успевает задержаться некоторое время на особом режиме) сход оптимальной траектории с особого режима на финальном участке времени может быть осуществлён только по граничному управлению.

Найдём такие ω_1 и ω_2 , при которых не происходит сход с особого режима на конечном участке времени $(\theta, T]$, то есть $z(T) \equiv z_{sng}$, а управление равно u_{sng} . Тогда с учётом исследований предыдущего раздела $\pi \big|_{t=T} \equiv 0$, или

$$\frac{\omega_2}{\omega_1} = z_{sng}.$$
 (23)

Рассмотрим случай $\frac{\omega_2}{\omega_1} > z_{sng}$. Покажем, что $\pi \big|_{t=T} > 0$, т.е. $u_{opt} = 1$ на $(\theta, T]$. Пусть $\frac{\omega_2}{\omega_1} = z_{sng} + \varepsilon$, где $\varepsilon > 0$. Тогда

$$\pi\big|_{t=T} = \frac{\omega_1}{z(T)} (z_{sng} + \varepsilon - z(T)).$$
(24)

Действительно, если $\pi \big|_{t=T} < 0$, то должны одновременно выполняться условия $z(T) > z_{sng} + \varepsilon$ и u = 0 на финальном участке, что невозможно в силу динамики задачи. Аналогично проверяется, что при $\frac{\omega_2}{\omega_1} < z_{sng}$ управление на конечном участке времени $u_{opt} = 0$, а при $\omega_2 = 1$, $\omega_1 = 0$ $u_{opt} = 1$.

Ниже рассмотрены четыре случая задачи (1) в зависимости от параметров ω_1 и ω_2 .

6. Случай I, $\frac{\omega_2}{\omega_1} = z_{sng}$

6.1. Формулировка основных результатов

При изучении задачи (1) будем выделять три случая.

- Случай І.а: $z_0 = z_{sng}$, T > 0 (особое значение начальной позиции z_0);
- Случай І.b: $z_0 > z_{sng}$, $T > \tau_2$ («большие» значения z_0), τ_2 положительный корень уравнения $z_-(\tau) = z_{sng}$, допускающий следующее выражение

$$\tau_2 = \frac{1}{\gamma} \ln \frac{1 + z_{sng}^{-\gamma}}{1 + z_0^{-\gamma}};$$
(25)

• Случай І.с: $z_0 \in (0, z_{sng})$, $T > \tau_3$ («малые» значения z_0), τ_3 — положительный корень уравнения $z_+(\tau) = z_{sng}$ (при заданном z_0 корень τ_3 можно найти, привлекая численные методы).

6.1.0.3. Оптимальное решение задачи (1)

Теорема 1. В случае **I.а** оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = z_{sng}, \ 0 \leqslant t \leqslant T, \quad u_{op}(t) = u_{sng}, \ 0 \leqslant t \leqslant T.$$

Теорема 2. В случае I.b оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{-}(t), & 0 \leqslant t \leqslant \tau_2, \\ z_{sng}, & \tau_2 < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 0 & , & 0 \leqslant t \leqslant \tau_2, \\ u_{sng}, & \tau_2 < t \leqslant T, \end{cases}$$

где τ_2 — точка переключения $\tau_2 \in (0,T)$ определяется формулой (25).

Теорема 3. В случае I.с оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_+(t), & 0 \leqslant t \leqslant \tau_3, \\ z_{sng}, & \tau_3 < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 1 & , & 0 \leqslant t \leqslant \tau_3, \\ u_{sng}, & \tau_3 < t \leqslant T, \end{cases}$$

где τ_3 — точка переключения $\tau_3 \in (0,T)$ является положительным корнем уравнения $z_+(\tau) = z_{sng}$.

6.2. Графики оптимальных траекторий

Графики функций $z_{op}(t)$ при различных z_0 показаны на рис. 17–19.

7. Случай II, $\frac{\omega_2}{\omega_1} < z_{sng}$

7.1. Формулировка основных результатов

7.1.0.4. Формулы и обозначения Для описания оптимального решения задачи (1) при достаточно больших значениях параметра T > 0 — длительности процесса управления — введём следующие обозначения:

$$T - \theta \equiv \Delta \theta = \frac{1}{\gamma} \ln \frac{z_{sng}^{\gamma}}{(1 + z_{sng}^{\gamma}) - \omega_1(1 + z_{sng})} > 0$$

- длительность финального участка,

$$\zeta(t,\theta) = \left[\left(1 + z_{sng}^{-\gamma} \right) e^{\gamma(t-\theta)} - 1 \right]^{-\frac{1}{\gamma}}$$
(26)

— траектория на финальном участке времени $[\theta, T]$.

При изучении задачи (1) будем выделять три случая.

Рис. 17. Оптимальная траектория $z_{op}(t)$ Рис. 18. Оптимальная траектория $z_{op}(t)$ при $z_0 \equiv z_{sng}$ при $z_0 > z_{sng}$

- Случай II.a: $z_0 = z_{sng}$, $T > \Delta \theta$ (особое значение начальной точки z_0);
- Случай II.b: $z_0 > z_{sng}$, $T > \tau_2 + \Delta \theta$ («большие» значения z_0), τ_2 положительный корень уравнения $z_-(\tau) = z_{sng}$, определяемый (25);
- Случай II.с: $z_0 \in (0, z_{sng})$, $T > \tau_3 + \Delta \theta$ («малые» значения z_0), τ_3 — положительный корень уравнения $z_+(\tau) = z_{sng}$ (при заданном z_0 корень τ_3 можно найти, привлекая численные методы).

7.1.0.5. Оптимальное решение задачи (1)

Теорема 4. В случае II.а оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{sng}, & 0 \leqslant t \leqslant \theta, \\ \zeta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} u_{sng}, & 0 \leqslant t \leqslant \theta, \\ 0, & \theta < t \leqslant T, \end{cases}$$

где функция $\zeta(t,\theta)$ определяется формулой (26), а точка переключения $\theta = T - \Delta \theta \in (0,T)$.

Теорема 5. В случае II.b оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{-}(t), & 0 \leqslant t \leqslant \tau_{2}, \\ z_{sng}, & \tau_{2} < t \leqslant \theta, \\ \zeta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 0 & , & 0 \leqslant t \leqslant \tau_{2}, \\ u_{sng}, & \tau_{2} < t \leqslant \theta, \\ 0 & , & \theta < t \leqslant T, \end{cases}$$

Рис. 19. Оптимальная траектория $z_{op}(t)$ при $0 < z_0 < z_{sng}$

еде τ_2 и θ — точки переключения: $0 < \tau_2 < \theta < T$; τ_2 определяется формулой (25), $\theta = T - \Delta \theta$.

Теорема 6. В случае II.с оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_+(t), & 0 \leqslant t \leqslant \tau_3, \\ z_{sng}, & \tau_3 < t \leqslant \theta, \\ \zeta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 1 & , & 0 \leqslant t \leqslant \tau_3, \\ u_{sng}, & \tau_3 < t \leqslant \theta, \\ 0 & , & \theta < t \leqslant T, \end{cases}$$

где τ_3 и θ — точки переключения: $0 < \tau_3 < \theta < T$; τ_3 — положительный корень уравнения $z_+(\tau) = z_{sng}$, $\theta = T - \Delta \theta$.

7.2. Вывод оптимального θ — момента времени схода с особого режима

Без ограничения общности рассмотрим случай I, когда $z_0 = z_{sng}$. Тогда значение функционала L в задаче (1) с оптимальным управлением и траекторией из теоремы 4 равно

$$h(\theta) = \omega_1 \int_0^T \left[1 + z_{op}^{\gamma}(t,\theta) - u_{op}(t,\theta) \right] dt + \omega_2 \int_0^T \frac{u_{op}(t,\theta)}{z_{op}(t,\theta)} dt.$$
(27)

Выполним максимизацию функции (27) при $\theta < T$. Функцию (27) можно представить в виде

$$h(\theta) = \omega_1 \int_0^\theta \left[1 + z_{sng}^\gamma - u_{sng} \right] dt + \omega_2 \int_0^\theta \frac{u_{sng}}{z_{sng}} dt + \omega_1 \int_\theta^T \left[1 + \zeta^\gamma(t,\theta) \right] dt$$

или, принимая во внимание равенство

$$1 + z_{sng}^{\gamma} - u_{sng} = \frac{u_{sng}}{z_{sng}} = W(z_{sng})$$

и формулу (26), определяющую функцию $\zeta(t,\theta)$, получаем

$$h(\theta) = W(z_{sng})\theta + \omega_1 \int_{\theta}^{T} \left[1 + \frac{1}{(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)} - 1} \right] dt =$$

$$= W(z_{sng})\theta + \omega_1 \int_{\theta}^{T} \frac{(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)}}{(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)} - 1} dt =$$

$$= W(z_{sng})\theta + \frac{\omega_1}{\gamma} \int_{\theta}^{T} \frac{d\left[(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)} - 1 \right]}{\left[(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)} - 1 \right]} =$$

$$= W(z_{sng})\theta + \frac{\omega_1}{\gamma} \ln\left[(1 + z_{sng}^{-\gamma})e^{\gamma(t-\theta)} - 1 \right] \Big|_{t=\theta}^{t=T} =$$

$$= W(z_{sng})\theta + \frac{\omega_1}{\gamma} \ln\left((1 + z_{sng}^{\gamma})e^{\gamma(T-\theta)} - z_{sng}^{\gamma} \right).$$

Найдём производную функци
и $h(\theta)$ и её корень. Имеем

$$h'(\theta) = \frac{1 + z_{sng}^{\gamma}}{1 + z_{sng}} + \frac{\omega_1}{\gamma} \frac{(1 + z_{sng}^{\gamma})e^{\gamma(T-\theta)}(-\gamma)}{(1 + z_{sng}^{\gamma})e^{\gamma(T-\theta)} - z_{sng}^{\gamma}} = \frac{1 + z_{sng}^{\gamma}}{1 + z_{sng}} - \omega_1 \frac{1 + z_{sng}^{\gamma}}{(1 + z_{sng}^{\gamma}) - z_{sng}^{\gamma}e^{-\gamma(T-\theta)}}.$$

Ищем корень уравнения

$$h'(\theta) = 0,$$

которое равносильно уравнению

$$\frac{1}{1+z_{sng}} = \omega_1 \frac{1}{(1+z_{sng}^{\gamma}) - z_{sng}^{\gamma} e^{-\gamma(T-\theta)}},$$

или

$$(1+z_{sng}^{\gamma})-z_{sng}^{\gamma}e^{-\gamma(T-\theta)}=\omega_1(1+z_{sng}),$$

или

$$e^{-\gamma(T-\theta)} = \frac{(1+z_{sng}^{\gamma}) - \omega_1(1+z_{sng})}{z_{sng}^{\gamma}},$$

или

$$e^{\gamma(T-\theta)} = \frac{z_{sng}^{\gamma}}{(1+z_{sng}^{\gamma})-\omega_1(1+z_{sng})}.$$

Отсюда получаем

$$T - \theta = \frac{1}{\gamma} \ln \frac{z_{sng}^{\gamma}}{(1 + z_{sng}^{\gamma}) - \omega_1 (1 + z_{sng})} \equiv \Delta \theta,$$
$$\theta = T - \Delta \theta.$$

Вычисляя вторую производную функции $h(\theta)$, находим

$$h''(\theta) = -\left(\omega_1 \frac{1 + z_{sng}^{\gamma}}{(1 + z_{sng}^{\gamma}) - z_{sng}^{\gamma} e^{-\gamma(T-\theta)}}\right)_{\theta}' =$$

$$= -(1 + z_{sng}^{\gamma})\omega_1(-1) \frac{-\gamma z_{sng}^{\gamma} e^{-\gamma(T-\theta)}}{\left[(1 + z_{sng}^{\gamma}) - z_{sng}^{\gamma} e^{-\gamma(T-\theta)}\right]^2} =$$

$$= -(1 + z_{sng}^{\gamma})\omega_1 \frac{\gamma z_{sng}^{\gamma} e^{-\gamma(T-\theta)}}{\left[(1 + z_{sng}^{\gamma}) - z_{sng}^{\gamma} e^{-\gamma(T-\theta)}\right]^2} < 0.$$

Следовательно, $\operatorname{argmax} h(\theta) = T - \Delta \theta.$ Оптимальное значение для длительности

$$T - \theta = \Delta \theta \equiv \frac{1}{\gamma} \ln \frac{z_{sng}^{\gamma}}{(1 + z_{sng}^{\gamma}) - \omega_1 (1 + z_{sng})}$$

финального участка времени управления получено. График
 функции $h(\theta)$ при $\omega_1=1\,$ показан на рис. 20.

Рис. 20. График функции $h(\theta)$

7.3. Графики оптимальных траекторий

Графики функций $z_{op}(t)$ при различных z_0 показаны на рис. 21–23.

Рис. 21. Оптимальная траектория $z_{op}(t)$ Рис. 22. Оптимальная траектория $z_{op}(t)$ при $z_0 \equiv z_{sng}$ при $z_0 > z_{sng}$

8. Случай III, $\frac{\omega_2}{\omega_1} > z_{sng}$

8.1. Формулировка основных результатов

8.1.0.6. Формулы и обозначения Для описания оптимального решения задачи (1) при достаточно больших значениях параметра T > 0 — длительности процесса управления — введём следующие обозначения:

 θ — точка схода с особого режима,

 $\eta(t, \theta)$ — траектория на участке времени [θ, T],

являющаяся решением задачи Коши

$$\dot{\eta} = 1 - \eta^{\gamma+1}, \quad \eta(\theta, \theta) = z_{sng}.$$
 (28)

$$h(\theta) = \omega_1 \int_{0}^{T} [1 + z_{op}^{\gamma}(t,\theta) - u_{op}(t,\theta)] dt + \omega_2 \int_{0}^{T} \frac{u_{op}(t,\theta)}{z_{op}(t,\theta)} dt$$
(29)

- значение функционала как функция от точки переключения θ.
 При изучении задачи (1) будем выделять три случая.
 - Случай III.a: $z_0 = z_{sng}$, $\underset{\theta \in [0,T]}{\operatorname{argmax}} h(\theta) > 0$ (особое значение начального состояния z_0);
 - Случай III.b: $z_0 > z_{sng}$, $\underset{\theta \in [0,T]}{\operatorname{argmax}} h(\theta) > \tau_2$ («большие» значения z_0), τ_2
 - положительный корень уравнения $z_{-}(\tau) = z_{sng}$, определяемый (25);

Рис. 23. Оптимальная траектория $z_{op}(t)$ при $0 < z_0 < z_{snq}$

• Случай III.с: $z_0 \in (0, z_{sng})$, $\underset{\theta \in [0,T]}{\operatorname{argmax}} h(\theta) > \tau_3$ («малые» значения z_0), τ_3 — положительный корень уравнения $z_+(\tau) = z_{sng}$ (при заданном z_0 корень τ_3 можно найти, привлекая численные методы).

8.1.0.7. Оптимальное решение задачи (1)

Теорема 7. В случае III.а оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{sng}, & 0 \leqslant t \leqslant \theta, \\ \eta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} u_{sng}, & 0 \leqslant t \leqslant \theta, \\ 1 & , & \theta < t \leqslant T, \end{cases}$$

где функция $\eta(t,\theta)$ определяется задачей Коши (28), точка переключения $\theta \in (0,T)$ есть точка максимума функции $h(\theta)$, определяемой соотношением (29), на отрезке [0,T].

Теорема 8. В случае III.b оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{-}(t), & 0 \leqslant t \leqslant \tau_{2}, \\ z_{sng}, & \tau_{2} < t \leqslant \theta, \\ \eta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 0 & , & 0 \leqslant t \leqslant \tau_{2}, \\ u_{sng}, & \tau_{2} < t \leqslant \theta, \\ 1 & , & \theta < t \leqslant T, \end{cases}$$

где τ_2 и θ — точки переключения: $0 < \tau_2 < \theta < T$; τ_2 определяется формулой (25), $\theta = \underset{\bar{\theta} \in [0,T]}{\operatorname{argmax}} h(\bar{\theta})$.

Теорема 9. В случае III.с оптимальные траектория и управление задачи (1) имеют вид

$$z_{op}(t) = \begin{cases} z_{+}(t), & 0 \leqslant t \leqslant \tau_{3}, \\ z_{sng}, & \tau_{3} < t \leqslant \theta, \\ \eta(t,\theta), & \theta < t \leqslant T, \end{cases} \quad u_{op}(t) = \begin{cases} 1 & , & 0 \leqslant t \leqslant \tau_{3}, \\ u_{sng}, & \tau_{3} < t \leqslant \theta, \\ 1 & , & \theta < t \leqslant T, \end{cases}$$

еде τ_3 и θ — точки переключения: $0 < \tau_3 < \theta < T$; τ_3 — положительный корень уравнения $z_+(\tau) = z_{sng}$, $\theta = \operatorname*{argmax}_{\bar{\theta} \in [0,T]} h(\bar{\theta})$.

8.2. Доказательство существования оптимального θ

Без ограничения общности рассмотрим случай I, когда $z_0 = z_{sng}$. Тогда значение функционала L в задаче (1) с оптимальным управлением и траекторией из теоремы 7 равно

$$h(\theta) = \omega_1 \int_0^T [1 + z_{op}^{\gamma}(t,\theta) - u_{op}(t,\theta)] dt + \omega_2 \int_0^T \frac{u_{op}(t,\theta)}{z_{op}(t,\theta)} dt =$$

$$= \left(\omega_1 [1 + z_{sng}^{\gamma} - u_{sng}] + \omega_2 \frac{u_{sng}}{z_{sng}}\right) \theta + \omega_1 \int_\theta^T \eta^{\gamma}(t,\theta) dt + \omega_2 \int_\theta^T \frac{dt}{\eta(t,\theta)}.$$
(30)

Найдём условия, при которых функция $h(\theta)$ имеет максимум. Производная функции (30) имеет вид

$$h'(\theta) = \left(\omega_1[1 + z_{sng}^{\gamma} - u_{sng}] + \omega_2 \frac{z_{sng}}{u_{sng}}\right) - \omega_1 \eta^{\gamma}(\theta, \theta) + \\ + \omega_1 \int_{\theta}^{T} \frac{\partial \eta}{\partial \theta}(t, \theta) \gamma \eta^{\gamma - 1}(t, \theta) dt - \frac{\omega_2}{\eta(\theta, \theta)} - \omega_2 \int_{\theta}^{T} \frac{\partial \eta}{\partial \theta}(t, \theta) dt = \\ = \omega_1[1 - u_{sng}] + \omega_2 \frac{u_{sng} - 1}{z_{sng}} + \omega_1 \int_{\theta}^{T} \frac{\partial \eta}{\partial \theta}(t, \theta) \gamma \eta^{\gamma - 1}(t, \theta) dt - \omega_2 \int_{\theta}^{T} \frac{\partial \eta}{\partial \theta}(t, \theta) dt.$$
(31)

Лемма 4. Для функции $\eta(t, \theta)$, определённой как решение задачи Коши (28), справедливо соотношение

$$\frac{\partial \eta}{\partial \theta}(t,\theta) = -\frac{\partial \eta}{\partial t}(t,\theta) \quad \forall t \ge \theta \ge 0.$$

Доказательство. Проинтегрируем дифференциальное уравнение из задачи Коши (28) с учётом начального условия:

$$\int_{z_{sng}}^{\eta} \frac{dz}{1 - z^{\gamma+1}} = \int_{\theta}^{t} dt,$$
(32)

или

$$f(\eta) = t - \theta, \tag{33}$$

где $f(\eta) = \int_{z_{sng}}^{\eta} \frac{dz}{1-z^{\gamma+1}}$. Продифференцировав равенство (33) по t и по θ ,

получим следующие соотношения для производных $\frac{\partial \eta}{\partial \theta}(t,\theta)$ и $\frac{\partial \eta}{\partial t}(t,\theta)$:

$$f'(\eta)\frac{\partial\eta}{\partial t} = 1, \quad f'(\eta)\frac{\partial\eta}{\partial\theta} = -1.$$
 (34)

Из соотношений (34) получаем утверждение леммы.

С учётом леммы 4 преобразуем выражение для производной (31):

$$h'(\theta) = \omega_1 [1 - u_{sng}] + \omega_2 \frac{u_{sng} - 1}{z_{sng}} - \omega_1 \int_{\theta}^{T} \frac{\partial \eta}{\partial t}(t, \theta) \gamma \eta^{\gamma - 1}(t, \theta) dt + \omega_2 \int_{\theta}^{T} \frac{\partial \eta}{\partial t}(t, \theta) dt =$$

$$= \omega_1 [1 - u_{sng}] + \omega_2 \frac{u_{sng} - 1}{z_{sng}} - \omega_1 \int_{z_{sng}}^{\eta(T, \theta)} \gamma z^{\gamma - 1} dz + \omega_2 \int_{z_{sng}}^{\eta(T, \theta)} \frac{dz}{z^2} =$$

$$= \omega_1 [1 + z_{sng}^{\gamma} - u_{sng}] + \omega_2 \frac{u_{sng}}{z_{sng}} - \omega_1 \eta^{\gamma}(T, \theta) - \frac{\omega_2}{\eta(T, \theta)} =$$

$$= W(z_{sng}) - \omega_1 \eta^{\gamma}(T, \theta) - \frac{\omega_2}{\eta(T, \theta)}.$$
(35)

Найдём вторую производную функции $h(\theta)$:

$$h''(\theta) = \frac{\partial \eta}{\partial \theta}(T,\theta) \cdot \frac{\omega_1}{\eta^2(T,\theta)} \cdot \left[\frac{\omega_2}{\omega_1} - \gamma \eta^{\gamma+1}(T,\theta)\right].$$
 (36)

Лемма 5. Функция $\eta(t, \theta)$, являющаяся решением задачи Коши (28), обладает следующими свойствами:

1.
$$\frac{\partial \eta}{\partial \theta}(t,\theta) < 0 \qquad \forall t \ge \theta \ge 0;$$

- 2. $\eta(t,\theta)$ монотонно убывает по θ при $t \ge \theta$ для любого $t \ge 0$;
- 3. $z_{sng} \leqslant \eta(t,\theta) \leqslant 1$ $\forall t \ge \theta \ge 0$;
- 4. $\lim_{t \to +\infty} \eta(t, \theta) = 1 \qquad \forall \theta \ge 0 \,.$

Рассмотрим равенства (35) и (36). Из леммы 5 следует, что функция $h''(\theta)$ либо отрицательна на всём отрезке [0, T], либо, если существует нуль функции (решение уравнения $\frac{\omega_2}{\omega_1} = \gamma \eta^{\gamma+1}(T, \theta)$), то она положительна левее нуля функции и отрицательна правее. Это означает, в свою очередь, что либо функция $h'(\theta)$ убывает на всём отрезке [0, T], либо сначала возрастает, а потом убывает. В крайних точках отрезка [0, T] функция $h'(\theta)$ имеет вид

$$h'(T) = \omega_1 [1 - u_{sng}] + \omega_2 \frac{u_{sng} - 1}{z_{sng}} = (1 - u_{sng}) \frac{\omega_1}{z_{sng}} \left[z_{sng} - \frac{\omega_2}{\omega_1} \right] < 0,$$

$$h'(0) = \omega_1 \left[1 + z_{sng}^{\gamma} - u_{sng} - \eta^{\gamma}(T, 0) \right] + \omega_2 \left(\frac{u_{sng}}{z_{sng}} - \frac{1}{\eta(T, 0)} \right).$$

С учётом проведённого выше исследования, для существования максимума функции $h(\theta)$ достаточно выполнения соотношения h'(0) > 0. Оно будет выполнено, например, когда $\eta(T,0) \ge \frac{z_{sng}}{u_{sng}} = \frac{1}{W(z_{sng})}$, так как первое слагаемое положительно. Так как $W(z_{sng}) > 1$, тогда в силу свойства 4 из леммы 5 всегда найдётся такое T, что выполнится условие $\eta(T,0) \ge \frac{1}{W(z_{sng})}$.

8.3. Графики оптимальных траекторий

Графики функций

 $z_{op}(t)$ при различных z_0 показаны на рис. 24–26.

Рис. 24. Оптимальная траектория $z_{op}(t)$ Рис. 25. Оптимальная траектория $z_{op}(t)$ при $z_0 \equiv z_{sng}$ при $z_0 > z_{sng}$

9. Случай IV, $\omega_2 = 1$

Анализ этого случая и окончательный результат (при $\gamma = \frac{1}{2}$) были представлены в докладе, тезисы которого содержатся в публикации [8]. При произвольном $\gamma \in (0,1)$ рассмотрение аналогично случаю III.

Рис. 26. Оптимальная траектория $z_{op}(t)$ при $0 < z_0 < z_{sng}$

10. Заключение

В статье исследована задача (1), найдены оптимальные управления и траектории для различных значений параметров модели. Для нахождения особого режима проанализированы различные численные методы поиска корней нелинейных уравнений.

Список литературы

- 1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. Москва. 1961. 391 с.
- 2. *Ли Э.Б., Маркус Л.* Основы теории оптимального управления. Москва, Издательство «НАУКА», 1972. 576 с.
- 3. Optimization of Technological Growth. Editors: Kryazhimskiy A., Watanabe Ch. // Gendaitosho, 2004. 392 pp.
- 4. Ватанабе Ч., Решмин С.А., Тарасьев А.М. Динамическая модель процесса инвестиций в научно-технические разработки. Прикладная математика и механика. Том 65. Вып. 3, 2001, с. 408–425.
- 5. Аввакумов С.Н., Киселёв Ю.Н. Численный метод поиска оптимального решения: Модель «Рост». Математические модели в экономике и биологии. Материалы научного семинара. Планерное. Московская обл. МАКС Пресс, 2003, с. 5–15.
- 6. Шестакова М.А. Множества достижимости и их приложения к исследованию задачи экономического роста. Математические модели в экономике и биологии. Материалы научного семинара. Планерное. Московская обл. МАКС Пресс, 2003, с. 95–98.

- 7. *Киселёв Ю.Н., Аввакумов С.Н., Орлов М.В.* Оптимальное управление. Линейная теория и приложения. МАКС Пресс, 2007, с. 248–250.
- 8. *Орлов С.М.* Максимизация уровня развития технологий в одной модели экономического роста. Сборник тезисов XVIII научной конференции «Ломоносов - 2011». Москва. МАКС Пресс, 2011, с. 42–43.
- Киселёв Ю.Н., Орлов С.М., Орлов М.В. Исследование одной нелинейной задачи оптимального управления с особыми режимами. Проблемы динамического управления. Выпуск 5. Под редакцией академика РАН Ю.С. Осипова, академика РАН А.В. Кряжимского. Москва. МАКС Пресс, 2010, с. 113–127.
- 10. Киселёв Ю.Н., Орлов М.В. Исследование одномерных оптимизационных моделей в случае бесконечного горизонта. Дифференциальные уравнения. 2004. Т. 40. № 12. с. 1615—1628.
- 11. *Аввакумов С.Н., Киселёв Ю.Н.* Решение систем нелинейных уравнений на основе ряда Чебышёва. Проблемы математической физики. 1998. с. 5–27.
- 12. Чебышёв П.Л. Вычисление корней уравнений. Полное собрание сочинений, том 5. 1951. с. 7-25.
- 13. Березин И.С., Жидков Н.П. Методы вычислений. том 2. Москва. Физматгиз, 1959, с. 140–143.
- 14. Самарский А.А., Гулин А.В. Численные методы. Москва. "Наука 1989, с. 199–205.
- R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth On the Lambert W function. Advances in Computational Mathematics. Berlin, New York: Springer-Verlag, 5, 1996. pp 329–359.