Федеральное государственное бюджетное образовательное учреждение высшего образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА» ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

УТВЕРЖДАЮ

Декан факультета ВМК МБУ

Академик

Московского воздания

«Намисентября 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Криптосистемы с открытым ключом Public key cryptosystems

Программа (программы) подготовки научных и научно-педагогических кадров в аспирантуре

102.01.00.112-фмн-кфап, 102.01.00.122-фмн-кмф, 102.01.00.122-фмн- кски,

102.01.00.235-фмн- кски, 102.01.00.112-фмн-ком, 102.01.00.122-фмн-кани

102.01.00.112-фмн-кса, 102.01.00.122-фмн-кса, 102.01.00.112-фмн-кндсипу,

102.01.00.122-фмн- кндсипу, 102.01.00.114-фмн- кмс, 102.01.00.115-фмн- кммп

102.01.00.115-фмн- кмк, 102.01.00.123-фмн- кмк, 102.01.00.116-фмн- квтм.

102.01.00.122-фмн- квтм, 102.01.00.116-фмн- квм, 102.01.00.122-фмн- квм, 102.01.00.122-фмн- коу,

102.01.00.112-фмн- коу, 102.01.00.123-фмн- кио, 102.01.00.122-фмн- кио, 102.01.00.235-фмн- киит,

102.01.00.235-фмн-касвк, 102.01.00.235-фмн-ксп, 102.01.00.235-фмн-киб,

102.01.00.236-фмн-киб, 102.01.00.235-фмн-кая

Рабочая программа дисциплины разработана в соответствии с Приказом Ректора МГУ №1216 от 24 ноября 2021 года «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых Московским государственным университетом имени М.В. Ломоносова»

1. Краткая аннотация:

Название дисциплины Криптосистемы с открытым ключом

Цель изучения дисциплины — Данный курс посвящен некоторым важным разделам криптографии, которые не затрагиваются в соответствующем стандартном курсе и которые важны как в теоретическом аспекте, так и для приложений. А именно, рассматриваются алгебраические основы теории делимости (кольца главных идеалов, евклидовы и факториальные кольца). Рассматриваются примеры использования этой теории для построения и анализа криптосхем. Рассматриваются протоколы цифровой подписи, обладающие дополнительными свойствами (интерактивность, стираемость, нулевое разглашение, неотслеживаемость, коллективная подпись, пороговые схемы, достоверность, законность и некоторые другие). Рассматриваются протоколы открытого распределения ключа, отличные от схемы Диффи-Хеллмэна, а также атаки на такие схемы отличные от использования дискретного логарифмирования. Рассматривается задача безопасного создания и хранения базы данных. Анализируются положительные и отрицательные стороны технологии «блокчейн». Вводится понятие децентрализованного протокола. Ро метод Полларда для логарифмов малого веса. Ро метод Полларда с оракулом Диффи-Хеллмэна. Вскрытие Шамиром рюкзака Меркла.

- 2. Уровень высшего образования –аспирантура
- 3. Научная специальность 2.3.6 «Методы и системы защиты информации, информационная безопасность», область науки: Физико-математические науки.
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры- элективный курс.
- 5. Объем дисциплины (модуля) составляет 2 зачетные единицы, всего 108 часов, из которых 28 часа составляет контактная работа студента с преподавателем (24 часов занятия лекционного типа, 4 часов мероприятия текущего контроля успеваемости и промежуточной аттестации),80 часа составляет самостоятельная работа учащегося.
- 6. Входные требования для освоения дисциплины (модуля), предварительные условия. На предыдущих уровнях высшего образования должны быть освоены общие курсы:
- 1. Общая алгебра
- 2. Элементарная теория чисел
- 3. Введение в криптографию
- 4. Теоретико-числовые алгоритмы

7. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	Всего					В томчисле				
	(часы)	Ко	онтактна	Самостоятельная работа обучающегося, часы из них						
		Занятиялекционно готипа	Занятиясеминарско готипа	Групповыеконсуль тации	Индивидуальныек онсультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выполнениедомаш нихзаданий	Подготовка к коллоквиумам	Всего
Тема 1.Алгебраические основы теории делимости.	16	6	2	-	-		8	8	-	8
Основные понятия и термины. Понятие евклидова кольца, простого элемента в произвольном кольце, единицы и ассоциированных элементов, факториального кольца.										

		1	I	I	I	T	I	I	I	1
Доказательство теоремы										
об однозначности										
разложения в кольце										
целых чисел, в										
произвольном евклидовом										
кольце. Теоремы о										
кольцах главных идеалов										
и о существовании										
единицы в евклидовом										
кольце.										
Разбираются примеры										
факториальных и										
нефакториальных колец										
из целых алгебраических										
чисел второй степени.										
D										
Разбираются некоторые										
задачи на делимость в										
кольце целых чисел. В										
том числе решаемые с										
помощью локазаннойфакториальнос										
ти некоторых колец										
целых алгебраических.										
ценых алгеоранческих.										
Тема 2. Асимметричные	8	4	_	-	_	_	4	4	_	4
протоколы.										
_										
Вводятся понятия:										
		<u> </u>								

	T		ı							Π
интерактивность, стираемость, нулевое разглашение, неотслеживаемость,										
коллективная подпись, пороговые схемы, достоверность, законность. Разбирается протокол Сидельникова										
открытого распределения ключа. Доказывается его нестойкость в кольце матриц.										
Разбираются протоколы протоколы аутентификации Антверпена и Шаума, ВВЅгенератор, протоколы с числами Блюма и последовательностями Лукаша.										
Разбираются протоколы цифровой подписи Шаума, Имаи-Матсумото-Патарина.										
Тема 3. Задача безопасного создания и хранения базы данных	12	6	-	-	-	-	6	6	-	6

Разбираются слабости централизованных схем. Вводится понятие децентрализации. Разбираются протоколы децентрализованных аутентификации, цифровой подписи и шифрования. Рассматриваются свойства схем, построенных при помощи технологии «блокчейн».									
Тема 4. Комплексные атаки на асимметричные протоколы	18	8	2	-	-	8	8	-	8
Ро метод полларда для дискретных логарифмов малого веса. Ро метод Полларда с оракулом Диффи-Хеллмэна.									
Атака на схему Диффи- Хеллмэна на эллиптических кривых с использованием спариваний.									

Вскрытие схемы «рюкзака» Меркла сведением к решению системы уравнений в целых числах.						
Промежуточная аттестация: <u>зачет</u> (экзамен)	22					56
Итого	108					

8. Образовательные технологии.

При проведении занятий предусматривается лекционных возможность использования информационных математических технологий, включающих пакеты программ: Pari, МАТНЕМАТІСА и др. Использование информационных технологий осуществляется, в частности, в процессе реализации активных и интерактивных форм проведения занятий. При чтении лекций в качестве материала, иллюстрирующего возможности математического моделирования в различных ситуациях, активно используются примеры из практики обработки данных в процессе работы криптографических протоколов. Информационные и интерактивные технологии используются при обсуждении проблемных и неоднозначных вопросов, требующих выработки решения в ситуации неопределенности.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Самостоятельная работа учащихся состоит в изучении лекционного материала, учебнометодической литературы, подготовки к текущему контролю и промежуточной аттестации.

Литература для самостоятельной работы студентов в соответствии с тематическим планом.

Тема 1

- ✓ Ван дер Варден Б.Л. Алгебра М: Наука 1976.
- ✓ Р.Лиддл, Г.Нидеррайтер. Конечные поля. Т.1, М.: Мир, 1988.

Тема 2

- ✓ Черепнев М.А. Криптографические протоколы: Учебное пособие. Центр прикладных исследований при механико-математическом факультете, 2006.
- ✓ Василенко О.Н. Теоретико-числовые алгоритмы в криптографии: МЦНМО, 2003.

Тема 3

- ✓ Черепнев М.А.Децентрализованная схема защищенного создания и хранения баз данных.
 INJOIT, т.8, №7 (2020), с. 109-115
- ✓ ЧерепневМ.А. Estimates of Fork-attack effectiveness on blockchain protocol INJOIT, v.7 (2019), n.4, p.25-29
- ✓ ЧерепневМ.А. Blockchain and the common signature protocol INJOIT, v.7 (2019), n.6, p.17-23

Тема 4

- ✓ Черепнев М.А., Грачева С.П. Ро-метод Полларда для нахождения дискретного логарифма в случае его малого веса. Информационные технологии, т.28, 2022, №1, с.26-32. DOI: 10.17587/it.28.26-32
- ✓ A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 145-152.

10. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература:

- ✓ Ван дер Варден Б.Л. Алгебра М: Наука 1976.
- ✓ Р.Лиддл, Г.Нидеррайтер. Конечные поля. Т.1, М.: Мир, 1988.
- ✓ Черепнев М.А. Криптографические протоколы: Учебное пособие. Центр прикладных исследований при механико-математическом факультете, 2006.
- ✓ Василенко О.Н. Теоретико-числовые алгоритмы в криптографии: МЦНМО, 2003.
- ✓ Черепнев М.А.Децентрализованная схема защищенного создания и хранения баз данных. INJOIT, т.8, №7 (2020), с. 109-115
- ✓ ЧерепневМ.А. Estimates of Fork-attack effectiveness on blockchain protocol INJOIT, v.7 (2019), n.4, p.25-29
- ✓ ЧерепневМ.А. Blockchain and the common signature protocol INJOIT, v.7 (2019), n.6, p.17-23
- ✓ Черепнев М.А., Грачева С.П. Ро-метод Полларда для нахождения дискретного логарифма в случае его малого веса. Информационные технологии, т.28, 2022, №1, с.26-32. DOI: 10.17587/it.28.26-32
- ✓ A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem, Proc. 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 145-152.
- ✓ Черепнев М.А., Шалимов Ю.П.Ро-метод Полларда для нахождения дискретного логарифма в случае, когда его биты можно угадывать, Дискретная математика, (в печати).

1. Дополнительнаялитература:

- 1. З.И.Боревич, И.Р.Шафаревич. Теория чисел М.: Наука, 1972.
- 2. Криптографические методы защиты информации.coвм. с С.Б.Гашковым, Э.А.Применко. Учебное пособие, «Академия», 2010, 298 с.
 - Перечень используемых информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы (при необходимости):

http://elibrary.ru www.scopus.com

✓

• Описаниематериально-техническойбазы. Занятия проводятся в аудитории, оснащенной мультимедийным экраном

11. Язык преподавания – русский

12. Преподаватели:

Степень, должность ФИО., e-mail, тел.: д.ф.-м.н., профессорЧерепнев Михаил Алексеевич, cherepniov@gmail.com, 8-916-1579745

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы домашних заданий:

- 1. Докажите факториальность кольца целых Гауссовых чисел.
- 2. Решить в целых числах $x^2 + 2 = y^3$
- 3. Разложить на простые множители 6+2і
- 4. Докажите нулевое разглашение в схеме стираемой подписи Шаума.
- 5. Кроме того в качестве домашнего задания подразумевается изучение рекомендуемой литературы.

Вопросы для промежуточной аттестации – зачета (экзамена):

- 1. Слабости централизованных схем. Слабости элементарной схемы цифровой подписи. Схемы стираемой подписи в общем виде.
- 2. Схема Шаума. Интерактивность, стираемость, нулевое разглашение.
- 3. Факториальность колец целых алгебраических второй степени. Решение диофантовых уравнений с использованием факториальности.
- 4. Евклидовы кольца, кольца главных идеалов, факториальные кольца
- 5. Приводимость многочленов над Z и над Q. Критерий Эйзенштейна.
- 7. Схема Имаи-Матсумото-Патарина
- 9. Технология Блокчейн и протокол коллективной подписи
- 10. Вскрытие схемы рюкзака Шамиром.
- 10. Схема с последовательностями Люка
- 11. Ро метод Полларда для логарифмов малого веса.

Методические материалы для проведения процедур оценивания результатов обучения

Зачет (экзамен) проходит по билетам, включающем 2 вопроса. Уровень знаний аспиранта по каждому вопросу на «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». В случае если на все вопросы был дан ответ, оцененный не ниже чем «удовлетворительно», аспирант получает общую оценку «зачтено».