В.С. Лапонин

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННЫХ СОЛИТОНОВ.

Введение.

Одним из наиболее ранних наблюдений в нелинейной оптике, тесно связанным с понятием солитона, была самофокусировка оптических пучков в керровской среде [1,2]. Для теоретического анализа этого эффекта волновое уравнение в керровской (кубичной) среде – кубическое нелинейное уравнение Шредингера (далее НУШ) – было исследовано в 1964 г. для одного и двух поперечных измерений [3]. Было обнаружено, самолокализованные решения кубического НУШ двумерные ЧТО испытывают коллапс, что означает, что ширина пучка обращается в ноль на конечном расстоянии, так как двумерные солитоны динамически неустойчивы. Даже одномерные солитоны в сплошной нелинейной среде не всегда устойчивы и распадаются на нити (которые по сути являются солитонами высших порядков) вследствие поперечной модуляционной неустойчивости. В результате пространственные солитоны в керровской среде экспериментально могут наблюдаться только в схемах, в которых одно из двух поперечных направлений исключено, то есть дифракция подавлена в одном из направлений (например, в планарном волноводе).

Наиболее ранние наблюдения пространственных солитонов относятся эксперименту 1974 Γ., В котором было К найдено самоканалирование оптического пучка в сплошной среде [4]. Спустя 10 лет был получен тот же результата в экспериментах с использованием ориентационной нелинейности жидкости CS₂ (сероуглерод) в оптических волноводах [5]. Для подавления дифракции пучка в одном поперечном направлении жидкий сероуглерод размещался между двумя стеклянными пластинами, эффективно формируя планарный Эти волновод. эксперименты инициировали многочисленные наблюдения одномерных светлых пространственных солитонов в 1990-ых годах при использовании различных сред, таких как стекло, полупроводники и полимеры.

В ряде экспериментов [6-9] изучались взаимодействия солитонов при их столкновении. Как известно из теории, два однофазных солитона притягиваются, а противофазные отталкиваются. Более интересна ситуация для других значений относительной фазы солитонов, так как во время неупругих столкновений возможен обмен энергией. Это свойство наблюдалось в эксперименте 1992 г. [7]. Когда разность фаз взаимодействующих солитонов была равна ($\pi/2$), один из солитонов приобретал энергию за счет другого. Направление обмена энергией менялось на обратное, когда фаза составляла ($3\pi/2$). Наблюдалось также слияние двух первоначально перекрывающихся пространственных солитонов, движущихся в различных направлениях.

Детализирование эффектов взаимодействия солитонов требует проведение математического моделирования физических экспериментов [10-17]. При этом возникает проблема развития эффективных численных методов решения нелинейных дифференциальных уравнений [10-13]. В данной работе освещается вывод НУШ из уравнений Максвелла, а также получение аналитического решения НУШ в одномерном случае. Благодаря эффективному численному методу, представленному в работах [10-13], производится численное исследование пространственных И сравнение полученных численных результатов солитонов с аналитическим решением.

Нелинейность среды.

Основное уравнение, описывающее эволюцию излучения в нелинейной среде, известно как нелинейное уравнение Шредингера. Из уравнений Максвелла можно получить следующее волновое уравнение для напряженности электрического поля *E*, связанного со световой волной распространяющейся в такой среде:

$$\nabla^2 E - \frac{1}{c} \frac{\partial^2 E}{\partial t^2} = \frac{1}{\varepsilon_0 c^2} \frac{\partial^2 P}{\partial t^2},\tag{1}$$

где c – скорость света в вакууме, \mathcal{E}_0 – проницаемость вакуума. Поляризация среды P состоит из двух частей:

$$P(r,t) = P_{lin}(r,t) + P_{nl}(r,t),$$

где линейная P_{lin} и нелинейная P_{nl} части связаны с электрическим полем общими соотношениями [9]

$$P_{lin}(r,t) = \varepsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(t-t')E(r,t')dt', \qquad (2)$$

$$P_{nl}(r,t) = \varepsilon_0 \int_{-\infty}^{\infty} \int \chi^{(3)} (t-t_1, t-t_2, t-t_3)E(r,t_1)E(r,t_2)E(r,t_3)dt_1dt_2dt_3$$

а $\chi^{(1)}$ и $\chi^{(3)}$ – тензоры восприимчивости первого и третьего порядков. Эти соотношения справедливы в электродипольном приближении для сред с локальным откликом. При этом пренебрегаются нелинейные эффекты второго порядка, и предполагается, что среда имеет центр инверсии. Если нелинейный отклик предполагается мгновенным, так что временная зависимость $\chi^{(3)}$ описывается произведением трех дельтафункций $\delta(t-t_1)$, то (4) сводится к выражению

$$P_{nl}(r,t) = \mathcal{E}_0 \chi^{(3)} E(r,t) E(r,t) E(r,t) .$$
(5)

Пусть P_{nl} является малым возмущением к P_{lin} . Предположив, что излучение сохраняет поляризацию на длине среды, можно использовать скалярное приближение. В приближении медленно изменяющейся огибающей полезно выделить быстро меняющуюся часть электрического поля, записав его в виде

$$E(r,t) = \frac{1}{2}\hat{x} \left[E(r,t) \exp(-i\omega_0 t) \right], \tag{6}$$

где ω_0 – несущая частота, \hat{x} – единичный вектор поляризации поля и E(r,t) – медленно изменяющаяся функция времени (в масштабе оптического периода). Компоненты P_{lin} и P_{nl} могут быть записаны в аналогичной форме. После подстановки (6) в (5) $P_{nl}(r,t)$ сводится к выражению

$$P_{nl}(r,t) \approx \mathcal{E}_0 \mathcal{E}_{nl} E(r,t) \,, \tag{7}$$

где нелинейная составляющая диэлектрической проницаемости определена как

$$\varepsilon_{nl} = \frac{3}{4} \chi_{xxxx}^{(3)} \left| E(r,t) \right|^2.$$
(8)

Согласно (2) $P_{lin} = \varepsilon_0 \chi_{xx}^{(1)} E$ и в результате линейная и нелинейная части могут быть объединены в следующее выражение для диэлектрической проницаемости [1-3]

$$\tilde{\mathcal{E}}(\boldsymbol{\omega}) = 1 + \chi_{xx}^{(1)}(\boldsymbol{\omega}) + \mathcal{E}_{nl}, \qquad (9)$$

Диэлектрическую проницаемость можно использовать для определения показателя преломления \tilde{n} и показателя поглощения $\tilde{\alpha}$, однако обе величины зависят от интенсивности, ввиду зависимости от ε_{nl} . Введем следующие величины:

$$\tilde{n} = n_0 + n_2 \left| E \right|^2, \quad \tilde{\alpha} = \alpha + \alpha_2 \left| E \right|^2, \quad (10)$$

Линейный показатель преломления n_0 и показатель поглощения α связаны с вещественной и мнимой частями $\chi_{xx}^{(1)}$. Используя соотношение $\tilde{\varepsilon} = (\tilde{n} + i\tilde{\alpha}c / 2\omega_0)^2$ и уравнения (8), (9), получим следующие выражения

$$n_{2} = \frac{3}{8n_{0}} \operatorname{Re}(\chi_{xxxx}^{(3)}), \quad \alpha_{2} = \frac{3\omega_{0}}{4n_{0}c} \operatorname{Im}(\chi_{xxxx}^{(3)}).$$
(11)

Нелинейная среда, в которой преобладает восприимчивость третьего порядка и уравнение (10) достаточно точно описывает нелинейный отклик, называется керровской.

Нелинейное уравнение Шредингера.

Зависимость показателя преломления от интенсивности существенно влияет на характер распространения электромагнитных волн. В случае пространственных солитонов можно ограничиться случаем пучка непрерывного излучения. Общее решение (1) записывается в виде (6) с $E(r,t) = A(r)\exp(i\beta_0 Z)$, где $\beta_0 = k_0 n_0 \equiv 2\pi n_0 / \lambda$ – постоянная распространения, выраженная через длину волны света $\lambda = 2\pi c / \omega_0$. Предполагается, что пучок распространяется вдоль оси Z и дифрагирует по поперечным направлениям X и Y, где X, Y, Z – пространственные координаты, составляющие r.

Когда в рассмотрение включены нелинейные и дифракционные эффекты и огибающая A является медленно изменяющейся функцией от Z с масштабом, много большим λ (параксиальное приближение), так что можно пренебречь второй производной $\frac{d^2A}{dZ^2}$, то оказывается, что огибающая удовлетворяет следующему нелинейному параболическому уравнению [4,5]:

$$2i\beta_0 \frac{\partial A}{\partial Z} + \left(\frac{\partial^2 A}{\partial X^2} + \frac{\partial^2 A}{\partial Y^2}\right) + 2\beta_0 k_0 n_{nl}(I)A = 0.$$
(12)

В случае керровской нелинейности $n_{nl}(I) = n_2 I$, где n_2 – керровский коэффициент нелинейности среды. Введем безразмерные переменные

$$x = \frac{X}{\omega_0}, \quad y = \frac{Y}{\omega_0}, \quad z = \frac{Z}{L_d}, \quad u = \left(k_0 \left| n_2 \right| L_d\right)^{1/2} A,$$
 (13)

где ω_0 – поперечный масштаб, связанный с шириной пучка на входе, а L_d – дифракционная длина. В этих безразмерных переменных уравнение (12) принимает вид (2+1)-мерного НУШ:

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + v |u|^2 u = 0, \qquad (14)$$

где $v = \pm 1$, а выбор знака зависит от знака нелинейного параметра n_2 , $n_2 < 0$ отвечает случаю самодефокусировки.

Размерность НУШ может меняться в зависимости от геометрии нелинейной среды. Для среды в виде планарного волновода излучение ограничено самим волноводом по одному из направлений. В отсутствии нелинейных эффектов пучок будет распространяться только по одному из направлений. В этом случае решение уравнения (1) можно записать в виде (6), где

$$E(r,t) = A(X,Z)B(Y)\exp(i\beta_0 Z), \qquad (15)$$

функция B(Y) описывает амплитуду моды, а β_0 – соответствующая постоянная распространения. Используя те же преобразования, что и выше, получается одномерное НУШ

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial x^2} + v |u|^2 u = 0.$$
 (16)

Выбору знака $v = \pm 1$ отвечают светлые и темные солитоны соответственно.

Аналитическое решение.

Рассмотрим случай, когда $n_{nl}(I) = n_2 I$, $(n_2 > 0)$, с безразмерными переменными (13). Тогда НУШ примет вид

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial x^2} + F(I)u = 0, \qquad (17)$$

где $I = |u(x,z)|^2$ – интенсивность излучения и функция F(I) характеризует нелинейные свойства среды, причем F(0) = 0. В случае керровской нелинейности F(I) = I и уравнение (17) может быть точно проинтегрировано методом обратной задачи рассеяния [3]. Односолитонное решение кубического НУШ имеет следующую общую форму:

$$u(x,z) = \operatorname{asch}\left[a(x-Vz)\right]\exp\left[iVx + i(V^2 - a^2)z/2 + i\varphi\right]$$
(18)

где φ – произвольная фаза. Для пространственного солитона параметры *а* и *V* связаны, соответственно, с амплитудой и поперечной скоростью солитона.

Интегрируемое кубическое НУШ связано с бесконечным числом сохраняющихся величин, называемых интегралами движения. Первые три интеграла определяют мощность P, импульс M и гамильтониан H солитона [4-6]. Они определяются следующим образом:

$$P = \int_{-\infty}^{\infty} |u|^2 dx, \quad M = i \int_{-\infty}^{\infty} (u_x^* u - u_x u^*) dx, \quad H = \frac{1}{2} \int_{-\infty}^{\infty} (|u_x|^2 - |u|^4) dx.$$
(19)

Чтобы найти солитоноподобные решения обобщенного уравнения (1), предположим, что оно имеет вид

$$u(x,z) = \Phi(x,\beta) \exp(i\beta z), \qquad (20)$$

где β – постоянная распространения солитона ($\beta > 0$) и функция $\Phi(x, \beta) \to 0$ при $|x| \to \infty$. При двухстепенной конкурирующей нелинейности нелинейный член примет вид [1]

$$F(I) = \alpha I^{p} + \gamma I^{2p} \tag{21}$$

где α и γ – постоянные, выбранные так, чтобы обеспечить насыщение нелинейности с ростом интенсивности, $\alpha\gamma < 0$. Параметр *p* определяет форму нелинейности [1].

Подставив (20)(21)В (1), получим обыкновенное И дифференциальное уравнение второго порядка Φ [1], для проинтегрировав которое, получим

$$\frac{d\Phi}{dx} = \left[\beta\Phi^2 - \frac{\alpha}{(p+1)}\Phi^{2p+2} - \frac{\gamma}{(2p+1)}\Phi^{4p+2} + C\right]^{1/2},$$
(22)

где *C* – константа. Так как для светлого солитона должно выполняться условие $\Phi = 0$ и $d\Phi/dx = 0$ при $|x| \rightarrow \infty$, находим, что *C* = 0. Сделав замену переменных $\psi = \Phi^{-2p}$, проинтегрируем уравнение (22) и получим солитонное решение $u_s(x,z)$

$$u_{s}(x,z) = \left[\frac{A}{\operatorname{ch}(Dx) + B}\right]^{1/(2p)} \exp(i\beta z), \qquad (23)$$

где вещественные параметры А, В, D определены следующим образом

$$A = 2(p+1)B\beta / \alpha, \quad B = \nu \left[1 + \frac{3(1+p)^2 \gamma}{(1+2p)\alpha^2} \beta \right]^{-1/2}, \quad D = 2p\sqrt{2\beta}. \quad (24)$$

В частности при p=1, выражение (23) описывает светлые солитоны, связанные с кубическим НУШ. При $\alpha = 1$, $\gamma = 0$, B = 1, $\nu = 1$ солитонное решение можно записать в виде

$$u(x,z) = [A/2]^{1/(2p)} \operatorname{sch}^{1/p} (Dx/2) \exp(i\beta z).$$

Оно сводится к светлому солитону в керровской среде при p = 1.

Численный метод.

Для применения итерационного метода М1 поиска солитонных решений, подробно описанного в работах [10-13], в уравнение (16) сделаем замену переменных $\xi = x - cz$ и получим следующее уравнение

$$-icu'(\xi) + \frac{1}{2}u''(\xi) + v |u(\xi)|^2 u(\xi) = 0.$$
(25)

Проинтегрировав последнее выражение по ξ , получим уравнение (26).

$$cu = -iu' + iv \int_{-L}^{\xi} (|u|^2 u)(p) dp.$$
(26)

Введем пространство сеточных функций H_N размерности N [10], состоящее из векторов $y = (y_1, y_2...y_N)^T$, $y_i = u(\xi_i)$ и снабженное скалярным произведением $(y,v) = \sum_{i=1}^N y_i v_i h$, где $y, v \in H_N$. В дальнейшем будем обозначать H_N через H. Пусть решение на n-ой итерации представляется в виде вектора $y^n \in H$, где y_i^n -приближенное решение в i-ом узле сетки, i = 1, 2, ..., N. Тогда y^0 - вектор начального значения, который определяется следующим образом $y_i^0 = u^0(\xi_i), i = 0, 1, ..., N$, где $u^0(\xi)$ – начальная финитная функция вида «домик» [13]. Численное решение уравнения (26) будем искать методом M1 по следующей схеме:

$$y_{j}^{n+1} = y_{j}^{n} - \tau \left(i \frac{(y_{j}^{n} - y_{j-1}^{n})}{h} + i\nu \sum_{k=1}^{j} |y_{k}^{n}|^{2} y_{k}^{n}h - c^{n}y_{j}^{n} \right), \qquad (27)$$
$$j = 1, 2, ..., N - 1, \quad n = 0, 1, 2...,$$

где \overline{y}^0 - начальная функция, τ - итерационный параметр метода ($\tau = 10^{-5}$). Параметр точности ε задается изначально ($\varepsilon = 10^{-6}$). Фазовая скорость волны вычисляется по формуле

$$c^{n} = \frac{(L(\overline{y}^{n}), \overline{y}^{n})}{(\overline{y}^{n}, \overline{y}^{n})},$$

где *L* - разностная аппроксимация оператора правой части уравнения (26).

Критерий остановки итерационного процесса имеет вид:

$$c^{n+1}-c^n\Big|<\mathcal{E}\Big|c^n\Big|.$$

Приведем численные результаты получения односолитонного решения для НУШ с помощью итерационного метода М1. Рассмотрим задачу (16) на отрезке [-100,100] с числом точек разбиения N = 2000.

Численные эксперименты.

На рисунках 1,2,3 приведены графики, слева – численное (пунктирная линия) и аналитическое (сплошная линия) решения для v = 1, справа - абсолютная погрешность $\delta = |u^{an}(\xi_i) - y_i^{num}|$, после 20 000, 40 000 итераций метода и после выполнения критерия останова метода соответственно.

На рисунке 4 слева представлен график «темного» солитона, а справа абсолютная погрешность. Солитонные решения такого вида удается получить при $\nu = -1$.

Невязка полученного численного решения при h = 0.1 для светлого солитона оставляет $\psi = 3 \cdot 10^{-3}$, а для темного солитона $\psi = 5 \cdot 10^{-3}$. Программа завершила свою работу примерно за 12 минут. При уменьшении шага в 10 раз, невязки уменьшились до $\psi = 7 \cdot 10^{-4}$ и $\psi = 9 \cdot 10^{-4}$ соответственно, а время работы программы возросло до 2.5 часов.

Из полученных результатов видно, что итерационный метод поиска солитонных решений [10-13] прекрасно подходит для численного моделирования пространственных солитонов (как светлых, так и темных), которые описываются нелинейным уравнением Шредингера в среде с керровской нелинейностью. Сравнение полученных численных решений с аналитическим решением позволяет говорить о хорошей точности и достаточно быстрой сходимости метода.

Литература.

- 1. Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От световодов к фотонным кристаллам. М.: Физматлит, 2005, 648с.
- 2. Hercher M. // Opt. Soc. Amer. 1964. V. 54. P. 563.
- 3. Kelley P.L. // Phys. Rev. Lett. 1965. V. 15. P. 1005.
- 4. Bjorkholm J.E., Ashkin A. // Phys. Rev. Lett. 1974. V. 32. P. 129.
- 5. Barthelemy A., Maneuf S., Froehly C. // Opt. Commun. 1985. V. 55. P. 201.
- 6. Shalaby M., Barthelemy A. // Opt. Lett. 1991. V. 16. P. 1472.
- 7. Shalaby M., Reynaud F., Barthelemy A. // Opt. Lett. 1992. V. 17. P. 778.
- 8. Shih M., Chen Z., Segev M. et al. // Appl. Phys. Lett. 1996. V. 69. P. 4151.

- 9. Butcher P.N., Cotter D.N. The Elements of Nonlinear Optics. Cambridge: Cambridge University Press, 1990.
- 10.Laponin V.S., Savenkova N.P., Il'utko V.P., Numerical method for soliton solutions // Computational Mathematics and Modeling, Consultants Bureau (United States), 2012, V. 23, № 3, P. 254-265.
- 11.Laponin V.S., Search for soliton solutions in the three-dimensional Gross-Pitaevskii equation // Computational Mathematics and Modeling, Consultants Bureau (United States), 2014, V. 25, № 3, P. 306-314.
- 12.Laponin V.S., Savenkova N.P., Search for 2-D solitons in Gross-Pitaevskii equation // Computational Mathematics and Modeling, Consultants Bureau (United States), 2014, V. 25, № 1, P. 1-8.
- 13.Savenkova N.P., Laponin V.S., A numerical method for finding soliton solutions in nonlinear differential equations // Moscow University Computational Mathematics and Cybernetics, 2013, V. 37, № 2, P. 49-54.
- 14.Bychkov V.L., Savenkova N.P., Anpilov S.V., Troshchiev Yu.V. Modeling of vorticle objects created in gatchina discharge // *IEEE Transactions on Plasma Science*, 2012, V. 40(12), P. 3158–3161.
- 15. Yusupaliev U., Savenkova N.P., Troshchiev Yu.V., Shuteev S.A., Skladchikov S.A., Vinke E.E., Gusein-zade N.G. Vortex rings and plasma toroidal vortices in homogeneous unbounded media. II. The study of vortex formation process // Bulletin of the Lebedev Physics Institute, 2011, V. 38, P. 275-282.
- 16.Yusupaliev U., Savenkova N.P., Shuteev S.A., Skladchikov C.A., Maslov A.K., Elensky V.G. Computer simulation of vortex self-maitenance and amplification // MOSCOW UNIVERSITY PHYSICS BULLETIN, 2013, V. 68, № 4, P. 317-319.