В.С. Лапонин

ПОИСК СОЛИТОННЫХ РЕШЕНИЙ В ТРЕХМЕРНОМ УРАВНЕНИИ ГРОССА-ПИТАЕВСКОГО.

Введение.

В данной работе исследуется существование солитонных решений в трехмерном уравнении Гросса-Питаевского с помощью итерационного метода М1, разработанного в [1]. При этом под солитоном [2] подразумевается уединенное возбуждение в нелинейной бездиссипативной среде [3]. Слово «уединенное» означает, что величина возбуждения (его амплитуда) убывает при удалении от центра солитона. Слово «бездиссипативной» означает, что при распространении солитонов механическая энергия сохраняется и трение отсутствует.

В работе [4] исследуется возможность формирования предельно узких квазидвумерных (атомных «игл») и трехмерных (атомных «пуль») солитонных состояний конденсата на примере атомов ⁷Li в состоянии (2,2) (где первое число – полный спин атома, а второе – его проекция) в Гросса-Питаевского рамках модифицированного уравнения с нелокальной нелинейностью. Выбор состояния (2,2) атомов лития обусловлен тем, что для этого состояния хорошо изучены параметры столкновения атомов. Авторам удается численно получить стационарные решения солитонного вида и привести параметрическую зависимость, подтверждающую устойчивость двумерного солитона, и показать, что нелокальность стабилизирует трехмерные сферически симметричные солитоны.

В работе [5] показано, что для конденсата Бозе-Эйнштейна, моделируемого Гросса-Питаевского притягивающей уравнением С нелинейностью при специальной конфигурации внешнего поля магнитной ловушки, возможны неколлапсирующие солитоноподобные волновые функции. На основе численных результатов можно сделать вывод, что в магнитооптической ловушке, моделируемой потенциалом, описанным выше, можно создать долгоживущий конденсат с большим числом атомов, изменив конфигурацию и параметры ловушки.

В работах [6], [7] приводятся различные результаты поиска солитонных решений (темных, светлых, отраженных солитонов) в задаче взаимодействия БЭК с внешним потенциалом (препятствием, магнитной ловушкой и т.д.) при помощи различных разностных схем и исследуется

влияние пространственного распределения потенциала внешних сил на формирование солитонных решений.

Постановка задачи.

Рассмотрим трехмерное уравнение Гросса-Питаевского, описывающее взаимодействие конденсата Бозе-Эйнштейна (БЭК) с препятствием (внешним потенциалом).

$$i\hbar\partial_{t}u(t,x,y,z) = -\frac{\hbar^{2}}{2m}\partial_{xx}u(t,x,y,z) - \frac{\hbar^{2}}{2m}\partial_{yy}u(t,x,y,z) - \frac{\hbar^{2}}{2m}\partial_{yy}u(t,x,y,z) - \frac{\hbar^{2}}{2m}\partial_{zz}u(t,x,y,z) + V_{0}V(t,x,y,z)u(t,x,y,z) + V_{0}V(t,x,y,z)u(t,x,y,z) + NB_{0}|u(t,x,y,z)|^{2}u(t,x,y,z), \quad -\infty < x, y, z < +\infty, \quad t > 0,$$

$$u(t,\pm\infty,y,z) = u(t,x,\pm\infty,z) = u(t,x,y,\pm\infty) = 0, \quad u(t=0,x,y,z) = u^{0},$$
(1)

где x, y, z – пространственные координаты, t – время, u(t, x, y, z) – комплексная макроскопическая волновая функция, т – масса атома, ћ – постоянная Планка, *N* – число атомов в конденсате в выбранной области, B_0 описывает взаимодействие между атомами и имеет вид $B_0 = 4\pi \hbar^2 a \ / m$, где а – управляющий параметр, который положителен для отражения и отрицательный для притяжения. Положительное значение параметра В₀ отражает расфокусировку лазерного пучка, а отрицательное значение означает самофокусировку лазерного пучка. Функция V(t, x, y, z)пространственно-временной обозначает потенциал внешних сил. действующих на конденсат (например, удерживающий потенциал ловушки), или потенциал, возникающий в связи с наличием препятствия внутри БЭК. V₀ обозначает амплитуду потенциала.

Зависимость потенциала от времени означает движение потенциала в соответствующем направлении. Для упрощения дальнейших исследований будем считать, что потенциал не движется (не зависит от времени), а движется БЭК в направлении потенциала.

Введем безразмерные координаты $\eta_x = \frac{x}{x_c}, \eta_y = \frac{y}{y_c}, \eta_z = \frac{z}{z_c}$, где x_c, y_c, z_c – характерные длины, относящиеся к конденсату, параметр $\mathcal{E} = \frac{\hbar}{2mx_c y_c z_c}$ имеет размерность c^{-1} , безразмерное время $\tau = \mathcal{E}t$ и

безразмерная волновая функция

 $\tilde{u}(\tau,\eta_x,\eta_y,\eta_z) = \sqrt{x_c y_c z_c} u(\varepsilon t, x_c x, y_c y, z, z_c).$ Разделив уравнение (1) на $2mx_c y_c z_c$, получим

$$i\partial_{\tau}\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}) = \frac{2mx_{c}y_{c}z_{c}V_{0}}{\hbar^{2}}\tilde{V}(\tau,\eta_{x},\eta_{y},\eta_{z})\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}) - \frac{y_{c}}{\hbar^{2}}\partial_{\eta_{x}\eta_{x}}\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}) - \frac{x_{c}}{y_{c}}\partial_{\eta_{y}\eta_{y}}\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}) - \frac{y_{c}}{z_{c}}\partial_{\eta_{z}\eta_{z}}\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}) + (2)$$

$$+8\pi Na |\tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z})|^{2} \tilde{u}(\tau,\eta_{x},\eta_{y},\eta_{z}),$$

$$-\infty < \eta_{x} < \infty, \quad -\infty < \eta_{y} < \infty, \quad -\infty < \eta_{z} < \infty, \quad \tau > 0.$$

Введем новые обозначения

$$D_{x} = \frac{y_{c}}{x_{c}}, \quad D_{y} = \frac{x_{c}}{y_{c}}, \quad D_{z} = \frac{y_{c}}{z_{c}}, \quad \alpha = N8\pi a, \quad \tilde{V}_{0} = \frac{2mx_{c}y_{c}z_{c}V_{0}}{\hbar^{2}}.$$
 (3)

Для простоты изложения вернемся в уравнении (2) к первоначальным обозначениям координат, времени, потенциала и волновой функции. Таким образом, обезразмеренное уравнение (2) примет вид

$$i\partial_{t}u(t,x,y,z) = -D_{x}\partial_{xx}u(t,x,y,z) - D_{y}\partial_{yy}u(t,x,y,z) - D_{z}\partial_{zz}u(t,x,y,z) + V_{0}V(x,y,z)u(t,x,y,z) + \alpha |u(t,x,y,z)|^{2} u(t,x,y,z), -\infty < x, y, z < \infty, t > 0.$$
(4)

Временной интервал и значения коэффициентов возьмем из [4]. Будем рассматривать БЭК из $N = 10^4$ атомов натрия (Na) при следующих значениях коэффициентов:

 $m_{Na} = 3,81 \times 10^{-26} \kappa c$, $a_{Na} = 2,75 \times 10^{-9} M$, $\hbar = 1,05 \times 10^{-34} \partial \kappa c$. Для пространственных коэффициентов возьмем следующие значения $x_c = y_c = z_c = 10^{-6} m$. Обезразмеренная единица времени соответствует $3,63 \times 10^{-4} c$.

Таким образом, ниже численно исследуется обезразмеренное трехмерное уравнение Гросса-Питаевского следующего вида:

$$\frac{\partial u}{\partial t} - iD_x \frac{\partial^2 u}{\partial x^2} - iD_y \frac{\partial^2 u}{\partial y^2} - iD_z \frac{\partial^2 u}{\partial z^2} + iuV(x, y, z) + i\alpha |u|^2 |u| = 0,$$

$$u(t, \pm \infty, y, z) = u(t, x, \pm \infty, z) = u(t, x, y, \pm \infty) = 0, u(t = 0, x, y, z) = u^0, \quad (5)$$

$$-\infty < x, y, z < \infty, t > 0.$$

Если V(x, y, z) = 0, то из уравнения (5) получается хорошо известное уравнение Шредингера для нелинейной оптики. Параметр α – управляющий параметр, характеризующий фокусировку лазерного пучка.

Как говорилось ранее, функция V(x, y, z) обозначает пространственно-временной потенциал внешних сил, действующих на конденсат, и определяется формулой (6).

$$V(x, y, z) = V_0 \exp\left(-\left(\frac{x - L_x/2}{a_{v_x}}\right)^{10} - \left(\frac{y - L_y/2}{a_{v_y}}\right)^{10} - \left(\frac{z - L_z/2}{a_{v_z}}\right)^{10}\right).$$
 (6)

Таким образом, параметры a_{v_x} , a_{v_y} , a_{v_z} характеризуют пространственное распределение потенциала. Если V(x, y, z) = 0, то внешнего воздействия нет.

Применение итерационного метода М1 к трехмерному уравнению Гросса-Питаевского.

Для применения итерационного метода М1 [12] в обезразмеренном уравнении Гросса-Питаевского (5) произведем замену переменных $\xi = y - ct$. Тогда $L_x \rightarrow L_1, L_y \rightarrow L_2, L_z \rightarrow L_3, a_{v_x} \rightarrow a_1, a_{v_y} \rightarrow a_2, a_{v_z} \rightarrow a_3, D_x \rightarrow D_1, D_y \rightarrow D_2, D_z \rightarrow D_3$, а уравнение (5) примет вид

$$cu'_{\xi} = -iD_{1}\frac{\partial^{2}u}{\partial x^{2}} - iD_{2}\frac{\partial^{2}u}{\partial \xi^{2}} - iD_{3}\frac{\partial^{2}u}{\partial z^{2}} + i\alpha |u|^{2} u + +iuV_{0}\exp\left(-\left(\frac{x-L_{1}/2}{a_{1}}\right)^{10} - \left(\frac{\xi+ct-L_{2}/2}{a_{2}}\right)^{10} - \left(\frac{z-L_{3}/2}{a_{3}}\right)^{10}\right),$$
(7)

Проинтегрировав по ξ , получим уравнение

$$cu = -iD_{1} \int_{0}^{\xi} \frac{\partial^{2} u}{\partial x^{2}}(x, p, z) dp - iD_{2} \frac{\partial u}{\partial \xi} - iD_{3} \int_{0}^{\xi} \frac{\partial^{2} u}{\partial z^{2}}(x, p, z) dp + iV_{0} \exp\left(-\left(\frac{x - L_{1}/2}{a_{1}}\right)^{10} - \left(\frac{z - L_{3}/2}{a_{3}}\right)^{10}\right) \times (8)$$

$$\times \int_{0}^{\xi} u(x, p, z) \cdot \exp\left(-\left(\frac{p + ct - L_{2}/2}{a_{2}}\right)^{10}\right) dp.$$

Таким образом, мы будем искать нетривиальное стационарное решение уравнения (8) в подвижной системе координат, движущейся со скоростью *c*. На области $\tilde{G} = \{-L_1 \le x \le L_1, -L_2 \le \xi \le L_2, -L_3 \le z \le L_3\}$ введем равномерную сетку $x_j = jh_1, j = 0, ..., N_1, \xi_k = kh_2, k = 0, ..., N_2, z_l = lh_3, l = 0, ..., N_3, u(x_j, \xi_k, z_l) = u_{j,k,l},$ тогда $u(x_j, \xi_k, z_0) = u(x_j, \xi_k, z_{N_3}) = 0, u(x_j, \xi_0, z_l) = u(x_j, \xi_{N_2}, z_l) = u(x_0, \xi_k, z_l) = u(x_{N_1}, \xi_k, z_l) = 0.$

Запишем итерационный метод

$$\frac{u_{j,k,l}^{n+1} - u_{j,k,l}^{n}}{\tau} = -iD_{1}\sum_{m=1}^{k} \frac{u_{j+1,m,l}^{n} - 2u_{j,m,l}^{n} + u_{j-1,m,l}^{n}}{h_{1}^{2}} h_{2} - iD_{2} \frac{u_{j,k+1,l}^{n} - u_{j,k,l}^{n}}{h_{2}} - \\ -iD_{3}\sum_{m=1}^{k} \frac{u_{j,m,l+1}^{n} - 2u_{j,m,l}^{n} + u_{j,m,l-1}^{n}}{h_{3}^{2}} h_{2} + i\alpha \sum_{m=1}^{k} |u_{j,m,l}^{n}|^{2} u_{j,m,l}^{n} h_{2} + \\ +iV_{0} \exp\left(-\left(\frac{x_{j} - L_{1}/2}{a_{1}}\right)^{10} - \left(\frac{z_{l} - L_{3}/2}{a_{3}}\right)^{10}\right) \times \right)$$

$$\times \sum_{m=1}^{k} u_{j,m,l}^{n} \exp\left(-\left(\frac{\xi_{m} - L_{2}/2 + c^{n}t^{*}}{a_{2}}\right)^{10}\right) h_{2} - c^{n}u_{j,k,l} = A^{h}(u_{j,k,l}^{n}),$$
(9)

где c^{n+1} вычисляется по формуле (10)

$$c^{n+1} = \frac{1}{\tau} \left(\frac{(A^{h}(u^{n}), u^{n})}{(u^{n}, u^{n})} \right).$$
(10)

 t^* – значение параметра, начиная с которого итерационный процесс (9) сходится к солитонному решению. Итерационный процесс останавливается, когда выполнено условие

$$\left|\frac{c^{n+1}-c^n}{c^n}\right| < \mathcal{E},$$

где τ – параметр метода, подбирается экспериментально, ε – задается изначально.

Отраженный солитон.

Для поиска отраженного солитона сделаем в уравнении (5) замену переменных $\xi = y + ct$ и произведем все преобразования, как и в случае основного солитона, получим уравнение (11)

$$\frac{u_{j,k,l}^{n+1} - u_{j,k,l}^{n}}{\tau} = -iD_{1}\sum_{m=1}^{k} \frac{u_{j+1,m,l}^{n} - 2u_{j,m,l}^{n} + u_{j-1,m,l}^{n}}{h_{1}^{2}} h_{2} - iD_{2}\frac{u_{j,k+1,l}^{n} - u_{j,k,l}^{n}}{h_{2}} - \\ -iD_{3}\sum_{m=1}^{k} \frac{u_{j,m,l+1}^{n} - 2u_{j,m,l}^{n} + u_{j,m,l-1}^{n}}{h_{3}^{2}} h_{2} + i\alpha \sum_{m=1}^{k} |u_{j,m,l}^{n}|^{2} u_{j,m,l}^{n} h_{2} + \\ +iV_{0}\exp\left(-\left(\frac{x_{j} - L_{1}/2}{a_{1}}\right)^{10} - \left(\frac{z_{l} - L_{3}/2}{a_{3}}\right)^{10}\right) \times \right)$$

$$\times \sum_{m=1}^{k} u_{j,m,l}^{n} \exp\left(-\left(\frac{\xi_{m} - L_{2}/2 - c^{n}t^{*}}{a_{2}}\right)^{10}\right) h_{2} - c^{n}u_{j,k,l} = A^{h}(u_{j,k,l}^{n}),$$
(11)

где c^{n+1} вычисляется по формуле (10).

Результаты численных экспериментов.

Ниже приводятся результаты применения итерационного метода М1 к трехмерному уравнению Гросса-Питаевского (5) при следующих значениях параметров $L_1 = L_2 = L_3 = 100$, $a_1 = 1$, $a_2 = 6$, $a_3 = 1$, $D_1 = D_2 = D_3 = 1$, $V_0 = 1$, $t^* = 20$, $\tau = 10^{-5}$, $\varepsilon = 10^{-6}$. Параметр $\alpha = -1$ для поиска основного солитона и $\alpha = 1$ для поиска отраженного солитона. На рисунке 1 справа, изображены три среза полученного основного солитонного решения в плоскостях *OXY*, *OXZ*, *OYZ* соответственно, а слева изображены три среза отраженного решения в плоскостях *OXY*, *OXZ*, *OYZ*.

Рис. 1.

На рисунках 2,3,4 приведены результаты подстановки полученных с помощью метода М1 численных решений в исходное нестационарное уравнение в различные моменты времени. Слева изображено распространение отраженного солитона, а справа обычного.

На рисунке 2 изображены результаты в моменты времени t = 16, t = 20, t = 24 в плоскости *ОХY*, а на рисунках 2, 3 изображены результаты в те же моменты времени в плоскостях *ОXZ*, *OYZ* соответственно.

Рис. 3.

Из анализа результатов, показанных на рисунках 2, 3, 4, видно, что и у обычного, и у отраженного солитонов сохраняются форма, область локализации и объем с течением времени.

Использование параллельных вычислительных систем.

Итерационный метод М1 обладает хорошими параллельными свойствами. Исходную дискретную область разбиваем на равные подобласти и рассылаем эти подобласти по процессорам, что позволяет получить почти 100% выигрыш в производительности. Метод М1 был реализован на многопроцессорных компьютерах с использованием программного средства MPI. Решение исходной задачи методом М1 при $N_1 = N_2 = N_3 = 400$ на различных машинах дало следующие результаты:

ПК (1 процессор(1 ядро), общая память)

ПК (2 процессора(4 ядра), общая память) 2 дня

Кластер (16 процессоров(32 ядра), разделенная память) 9 часов Одновременное решение задач поиска обычных и отраженных солитонов методом М1 дало следующие результаты :

7 дней

ПК (1 процессор(1 ядро), общая память)	13 дней
ПК (2 процессора(4 ядра), общая память)	4 дня
Кластер (16 процессоров(32 ядра), разделенная память)	17 часов.

Из результатов видно, что 100% выигрыша в производительности не получается в силу неравномерной загрузки процессоров и времени на пересылки данных между процессорами.

Заключение.

В настоящей работе демонстрируется применение итерационного метода М1 нахождения солитонных решений к трехмерному нелинейному уравнению Гросса-Питаевского [5], описывающего взаимодействие БЭК с препятствием (внешним потенциалом) [6], [7]. Метод М1 не требует никаких дополнительных преобразований и может быть применен по стандартной схеме, описанной в [1], что значительно упрощает решение задачи. Особенностью метода М1 является сходимость к солитонному решению для любого начального распределения волновой функции, схожего с начальными приближениями, описанными в [1].

Отметим, что при подстановке полученных солитонных решений (как обычных, так и отраженных) в исходное нестационарное уравнение солитонные решения распространялись, сохраняя форму, что подтверждает их устойчивость.

Из результатов видно, ЧТО метод позволяет эффективно использовать параллельные вычислительные комплексы, но ДЛЯ построения области значений управляющих параметров α, t^* , в которой существуют солитонные решения (как это было сделано для двухмерного уравнения Гросса-Питаевского), требуется более мощный кластер.

Список литературы.

1. Лапонин В.С., Савенкова Н.П., Ильютко В.П. Численный метод поиска солитонных решений // Прикладная математика и информатика, сборник факультета ВМК, № 38, год 2011. Стр. 69-80.

2. Ньюэлл А. Солитоны в математике и физике. М.: Мир, 1989.

3. Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: Метод обратной задачи. М.: Наука, 1980.

4. Н.Н. Розанов, Ю.В. Рождественский, В.А. Смирнов, С.В. Федоров, Атомные «иглы» и «пули» конденсата Бозе-Эйнштейна и формирование наноразмерных структур. // Письма в ЖЭТФ, 2003 г., том 77, вып. 2, с. 89-92.

5. А. В. Борисов, А. Ю. Трифонов, А. В. Шаповалов, Квазиклассические решения уравнения Гросса-Питаевского, локализованные в окрестности окружности. // Компьютерные исследования и моделирование 2009 Т. 1 № 4 С. 359–365.

6. Kamchatnov, A.M., and Korneev, S.V., "Dynamics of ring dark solitons in Bose-Einstein condensates and nonlinear optics," *Phys. Lett. A* 374, 4625-4628 (2010).

7. Kamchatnov, A.M., and Salerno, M., "Dark soliton oscillations in Bose-Einstein condensates with multi-body interactions," *J. Phys. B* 42, 185303 (2009).