А.А. Онищенко, С.И. Гуров

КЛАССИФИКАЦИЯ НА ОСНОВЕ АФП И БИКЛАСТЕРИЗАЦИИ: ВОЗМОЖНОСТИ ПОДХОДА^{*}

1. Введение

Неформальная рассматриваемых постановка ниже задач классификации по прецедентам заключается в следующем. Имеется множество объектов \mathcal{X} , разбитое на два класса \mathcal{X}^+ (положительный) и \mathcal{X}^- (отрицательный) относительно обладания/необладания объектами некоторого целевого признака. Элементы данных классов называются, соответственно, положительными или отрицательными примерами. Информация о таком разбиении содержится только в указании о принадлежности к данным классам элементов конечной обучающей последовательности (или выборки) из \mathcal{X} , элементы которой называют Все объекты имеют описание на определённом формальном языке, указывающем степень обладания объектами конечным числом некоторых признаков. Указанное описание прецедентов мы представляем в виде объектно-признаковой (0,1)-матрицы, в которой объектам соответствуют строки, признакам — столбцы, а элементы матрицы кодируют наличие/отсутствие признаков у объектов. По данному описанию прецедентов необходимо сформулировать решающее правило или *классификатор*, который по описанию нового объекта из \mathcal{X} указывал бы имя класса, его содержащего. При этом решающее правило должно обладать свойством оптимальности по отношению функционалу, определяющему качество классификации.

Значительная группа современных методов поиска зависимостей и анализа данных базируется на теории решёток замкнутых множеств (решёток формальных понятий или решёток Галуа). К ним относится анализ формальных понятий (АФП, англ. Formal Concept Analysis) [1,2]. Важной стороной методов классификаций на основе АФП является отсутствие тех или иных допущений относительно появления объектов в данной задаче (такие допущения, обычно не проверяемые на практике, могут отражаться в построенных распознающих алгоритмах в виде тех или иных условий, в действительности не присущих рассматриваемой задаче). Развитием метода АФП является подход, называемый бикластеризацией, и представляющий собой совокупность моделей и методов, альтернативных

^{*} Работа выполнена при частичной финансовой поддержке РФФИ, проект № 10-01-00131-а и ЗАО «Интел».

классическим подходам к кластеризации и опирающихся на идею сохранения объектно-признакового описания сходства кластеров.

С помощью АФП и методов на его основе решают задачи анализа данных и обработки знаний, в частности, и прикладные задачи классификации по положительным и отрицательным примерам [12]. Целью данной работы является исследование эффективности таких подходов. Все описанные ниже алгоритмы реализованы в среде MatLab.

2. АФП и решётка формальных понятий

Анализ формальных понятий — прикладная область теории решёток. Пусть G и M — непустые множества, называемые соответственно множествами объектов и признаков, а I — соответствие между G и M, для которого принята инфиксная форма записи, интерпретирующаяся следующим образом: gIm означает, что объект $g \in G$ обладает признаком $m \in M$.

Определение 1. Тройка K = (G, M, I) называется формальным контекстом.

Понятно, что в конечном случае контекст может быть задан виде объектно-признаковой (0,1)-матрицы.

Для произвольных $A\subseteq G$ и $B\subseteq M$ вводятся отображения $\varphi\colon 2^G\to 2^M$ и $\psi\colon 2^M\to 2^G$ такие, что

 $A\varphi = \{m \subseteq M | \forall g \in A \ (gIm) \ , \ B\psi = \{g \subseteq G | \forall m \in B \ (gIm) \ .$ (если φ — отображение P на Q, то образ $q \in Q$ элемента $p \in P$ мы обозначаем $p\varphi$, а образ подмножества $A \subseteq P$ — $A\varphi$). Нетрудно видеть, что пара отображений (φ, ψ) является соответствием Галуа между ч.у. множествами 2^G и 2^M , упорядоченными по включению [4]. В соответствии с традицией $A\Phi\Pi$, отображения φ и ψ обозначаются $(\cdot)'$, так что приведённые выше множества $A\varphi$ и $B\psi$ записываются как A' и B' соответственно. Двойное применение операции $(\cdot)'$ является, очевидно, оператором замыкания на объединении множеств 2^G и 2^M .

Определение 2. Пусть дан контекст K. Пара подмножеств (A, B), где $A \subseteq G$, а $B \subseteq M$, и таких, что A' = B и B' = A, называется формальным понятием данного контекста с формальным объёмом A и формальным содержанием B.

Если контекст K представлен в виде (0,1) -матрицы, то формальному понятию соответствует максимальная её подматрица, заполненная единицами.

Очевидно, что объём и содержание произвольного формального

понятия являются замкнутыми множествами. Множество всех формальных понятий $\{(A,B)\}$ данного контекста K образует полную решётку $\mathfrak{B}(K)$ относительно операций V (объединение) и Λ (пересечение):

$$(A_1, B_1) \lor (A_2, B_2) \triangleq ((B_1 \cap B_2)', B_1 \cap B_2),$$

 $(A_1, B_1) \land (A_2, B_2) \triangleq (A_1 \cap A_2, (A_1 \cap A_2)'),$

называемую решёткой формальных понятий или решёткой Галуа.

3. Основные понятия классификации на основе АФП

Пусть M — множество признаков, которые назовем *структурными*, а $w \notin M$ — некоторый *целевой* признак (свойство).

Данные для обучения представляются множествами положительных, отрицательных и недоопределённых примеров (символически (+) -, (-) - и (τ) -примеры соответственно). Положительные (отрицательные) примеры суть объекты, про которые известно, что они обладают (соответственно, не обладают) свойством w. Для недоопределённых примеров неизвестно значение предиката обладания свойством w, и цель классификации состоит в определении значения этого предиката.

В терминах АФП входные данные могут быть описаны с помощью трех контекстов по отношению к данному свойству w: положительного $K_+ = (G_+, M, I_+)$, отрицательного $K_- = (G_-, M, I_-)$ и недоопределённого $K_{\tau} = (G_{\tau}, M, I_{\tau})$. Здесь M — множество структурных признаков, G_+ , G_- и G_{τ} — совокупности соответственно положительных, отрицательных и недоопределённых примеров, а $I_{\epsilon} \subseteq G_{\epsilon} \times M$, где $\epsilon \in \{+, -, \tau\} \triangleq E$ — соответствия, определяющие структурные признаки (+)-, (-)- и (τ) -примеров. Операторы Галуа в этих контекстах обозначаются, соответственно, верхними индексами из E, например, A^+ , A^- , A^{τ} . Для краткости далее (кроме случая $G, M \subseteq \mathbb{N}$) будем писать g', g'', g^-, g^{τ} , m' и т. д., вместо $\{g\}', \{g\}'', \{g\}^{\tau}, \{g\}^{\tau}, \{m\}'$ соответственно.

Теперь могут быть определены положительная и отрицательная гипотезы в пользу положительной и отрицательной классификации соответственно по отношению к некоторому свойству [6].

Пусть задано свойство w и множество примеров, для которых определены контексты K_+ , K_- и K_{τ} . Последующие определения даются по отношению к выбранному свойству w.

Определение 1. Формальное понятие положительного контекста называется *положительным*.

Если (A, B) — положительное понятие, то множество A называется

его положительным формальным объёмом, а множество B — положительным формальным содержанием.

Аналогично определяются отрицательные и недоопределённые понятия, формальные объём и содержание для контекстов K_{-} и K_{τ} .

Определение 2. Положительное формальное содержание B положительного понятия (A, B) называется

- положительной или (+)-предгипотезой, если оно не является формальным содержанием ни одного отрицательного понятия;
- положительной или (минимальной) (+)-гипотезой, если оно не является подмножеством содержания g^- для некоторого элементарного понятия (g, g^-) для отрицательного примера g, и (+)-фальсифицированной гипотезой или фальсифицированным (+)-обобщением, иначе.

Отрицательные (или (-)-) предгипотезы, гипотезы и фальсифицированные гипотезы определяются аналогично.

Из определения непосредственно следует, что гипотеза является также и предгипотезой. Гипотезы используются для классификации недоопределённых примеров из множества G_{τ} .

Определение **3.** Если формальное содержание недоопределённого примера $g \in G_{\tau}$ содержит положительную (отрицательную) гипотезу, то говорят, что последняя является гипотезой в положительной (отрицательной) классификации пользу соответственно.

АФП ориентирован на анализ качественной информации. Для получения количественных признаков используется процедура шкалирования. С этой целью, кроме двузначных контекстов, в АФП используются и *многозначные*, имеющие вид (G, M, W, I), где G, M, W — множества объектов, признаков и значений признаков, соответственно, а I — тернарное отношение $I \subseteq G \times M \times W$, задающее значение $W \in W$ признака $M \in M$ объекта $M \in M$ объекта M объе

Шкалирование есть представление многозначных контекстов двузначными. Шкалой для признака m многозначного контекста называется контекст вида (G_m, M_m, I_m) с $m(G) \subseteq G_m$. Шкалу составляют объекты (значения шкалы) и признаки. Примерами шкал являются номинальная, порядковая, межпорядковая, дихотомичная (булева), контрноминальная и т. д. шкалы [2].

Простейшая модель обучения в терминах АФП основана на общем принципе: для заданных положительных и отрицательных примеров

«целевого понятия» необходимо построить «обобщение» положительных понятий, которое не покрывало бы отрицательных. Если имеется гипотеза в пользу положительной (отрицательной) классификации и нет гипотез в пользу отрицательной (положительной) классификации, то $g \in G_{\tau}$ классифицируется положительно (отрицательно). Отказ от классификации происходит, если формальное содержание g^{τ} либо не включает в качестве подмножеств ни положительных, ни отрицательных гипотез (недостаток данных), либо включает в себя как положительные, так и отрицательные гипотезы (противоречивые данные).

4. Алгоритмы и результаты классификации «прямым» методом АФП

По описанному методу АФП был составлен алгоритм решения задач классификации. В нём предусматривалось линейное шкалирование признаков — получение вместо одного $n \times intervals$ признаков (где intervals — задаваемый параметр алгоритма). Алгоритм был применён для распознавания заболевания печени (Liver Disorders) по данным анализов. Эта и некоторые из встречающихся далее в п. 6 задач взяты из банка UCI Machine Learning Repository 1 . В рассматриваемой задаче объектами являются совокупности данных шести анализов исследуемых пациентов. Имеется обучающая выборка из 345 прецедентов, разделенная на положительный и отрицательный классы относительно целевого признака «наличие заболевания печени». Сложность задачи состоит в том, что отклонение показателей анализов от нормальных значений может быть вызвано не только заболеваниями печени, но и другими причинами.

Реализованный алгоритм был протестирован на данной задаче методом скользящего контроля. Результат состоял в том, что алгоритм практически всегда отказывается от классификации по недостатку информации за исключением всего лишь пяти случаев, которые классифицируются правильно.

Ясно, что данный алгоритм непригоден для решения поставленной задачи. С целью его улучшения была проведена следующая модификация, касающаяся порождения гипотез и способа классификации.

1. Модификация гипотез — в гипотезу добавлялись признаки, которыми обладали "почти" все объекты заданного класса. При этом контролировалось, чтобы доля объектов класса, отклоняющихся от гипотезы, не превышала некоторого значения P (новый параметр программы) и, понятно, уже не гарантируется, что гипотеза не входит ни в

_

¹ http://archive.ics.uci.edu/ml

одно описание объекта из другого класса.

Заметим, что в данном направлении ведутся интенсивные исследования [2,9,10].

- 2. Введение метрики между объектами и модификация классификации чем в большем числе координат объекты различаются, тем больше между ними «расстояние». Таким образом, вычислялось расстояние между гипотезами положительного и отрицательного классов и классифицируемым объектом. Полученные расстояния делились на количество единиц в соответствующих гипотезах. Объекту присваивался тот класс, с которым у него было меньше различий.
- 3. Введение весов признаков признак имеет тем больший вес, чем больше единиц содержит соответствующий ему столбец.

Полученный модифицированный алгоритм был применён к рассматриваемой задаче Liver Disorders. В результате при значениях параметров intervals = 10 и P = 0.2 алгоритм отказывается классифицировать 266 (77%) объектов; из оставшихся 79 объектов 54 классифицируются верно и 25 — ошибочно, т. е. процент ошибок $\approx 32\%$.

5. Бикластеризация

Развитием подхода к классификации на основе $A\Phi\Pi$ является метод бикластеризации [7, 8, 9].

Используя методы $A\Phi\Pi$, для любых объектно-признаковых данных можно построить иерархическую структуру формальных понятий (бикластеров), позволяющую отразить их таксономические свойства в удобном для аналитика виде. Основным недостатком решёток понятий является их большой размер: для объектно-признаковой таблицы размером $m \times n$ число таких бикластеров в худшем случае равно 2^n . Идея рассматриваемого подхода состоит в ослаблении требований к формальным понятиям, что даёт возможность не только сократить число порождаемых бикластеров, но и устранить влияния шума (вариаций признаков) на результаты.

Определение 1. Для формального контекста K = (G, M, I) объектным понятием называется формальное понятие вида $(g^{''}, g^{'})$, где $g \in G$, а признаковым понятием — формальное понятие вида $(m^{'}, m^{''})$, где $m \in M$.

Определение 2. Для формального контекста K = (G, M, I) и любой пары объектных и признаковых понятий $(g^{''}, g^{'})$ и $(m^{'}, m^{''})$, связанных отношением вложения $(g^{''}, g^{'}) \leq (m^{'}, m^{''})$, назовем *бикластером* пару вида $(m^{'}, g^{'})$.

Бикластер есть подматрица объектно-признаковой (0,1)-матрицы, такая, что её строки проявляют «сходство друг с другом» на столбцах и наоборот.

Определение 3. Плотностью бикластера (A, B) формального контекста K = (G, M, I) называется величина

$$\rho(A, B) = |I \cap \{A \times B\}|/(|A| \cdot |B|).$$

Очевидно, что $0 \le \rho(A, B) \le 1$, а если (A, B) — формальное понятие, то $\rho(A, B) = 1$.

Зададимся некоторым числом $\rho_{min} \in [0, 1]$ и будем называть бикластер (A, B) *плотным*, если $\rho(A, B) \ge \rho_{min}$, и определим на бикластерах отношение вложения \sqsubseteq :

$$(X_1, Y_1) \sqsubseteq (X_2, Y_2) \triangleq (X_1 \subseteq X_2) \text{ и } (Y_1 \subseteq Y_2).$$

Оказывается, что при $\rho_{min}=0$ для любого формального понятия некоторого контекста K существует бикластер, в который оно вкладывается. С другой стороны, при достаточно больших значениях ρ_{min} не все формальные понятия могут оказаться вложенными в некоторый бикластер, построенный по данному формальному контексту. Существует быстрый (со сложностью, не более, чем $O(|G|\cdot|M|)$) алгоритм поиска бикластеров [9].

Пусть K = (G, M, I) — формальный контекст, (A, B) — некоторое формальное понятие K, тогда *индекс устойчивости* σ понятия (A, B) определяется выражением $\sigma(A, B) = |\mathcal{C}(A, B)|/2^{|A|}$, где $\mathcal{C}(A, B)$ — объединение подмножеств $C \subseteq A$, таких, что C = B'. Очевидно, что $0 \le \sigma(A, B) \le 1$. Если выбрано значение $\sigma_{min} \in [0, 1]$, то формальное понятие (A, B) назовём *устойчивым*, если $\sigma(A, B) \ge \sigma_{min}$.

Бикластеры, а также плотные и устойчивые формальные понятия используют для формирования гипотез при решении задач кластеризации [10].

6. Применение метода бикластеризации для классификации

С точки зрения практического применения при классификации бикластеризация может быть использована как обработка данных после шкалирования: для последующего порождения гипотез отбираются лишь «значимые» объекты, т. е. те, чья плотность превышает порог ρ_{min} . Такой подход позволяет избегать использования шумовых эффектов при порождении гипотез.

Отличие от вышеописанного алгоритма состоит в том, что теперь

гипотезы порождаются с использованием отобранных бикластеризацией «хороших объектов». В описанном методе присутствуют два настраиваемых параметра: ρ_{min} — порог плотности бикластера и P — доля объектов класса, отклоняющихся от классической гипотезы (используется в процедуре порождения гипотез). Подбор этих параметров нетривиален.

Если значение параметра ρ_{min} будет занижено, то в порождении гипотез будут участвовать шумовые признаки и выбросы. Если же его значение будет завышено, будут завышены и требования к гипотезе. Иными словами, порожденная гипотеза будет указывать на то, что все объекты класса обладают значительным набором признаков, но вероятность того, что у классифицируемого объекта будут присутствовать все эти признаки, мала. Возможно, было бы полезным использовать интервал для значений параметра ρ_{min} , чтобы отбирать основные, а не граничные объекты. Этот метод был протестирован, однако существенных улучшений качества классификации не дал, что будет объяснено позже спецификой именно этой конкретной задачи.

Когда значение параметра P близко к нулю, гипотезы порождаются согласно классическим представлениям $A\Phi\Pi$: в них входят только те признаки, которыми обладают все объекты данного класса. Проблема состоит в том, что если класс объединяет большое число объектов, то признаков, которыми обладают все объекты, будет очень мало, и гипотеза теряет свою «представительность» для данного класса. Более того, велика вероятность гипотезы одного класса совпасть с гипотезой другого класса. Если же значение параметра взять слишком большим, то гипотеза будет требовать от контрольного объекта обладать большим количеством признаков, что опять же может быть слишком жёстким условием. В некотором смысле, это — известный в распознавании образов эффект *переобучения*.

По вышеописанному алгоритму была составлена компьютерная программа. Результаты тестирования на различных задачах методом скользящего контроля представлены в приведённой ниже таблице.

В заголовке таблицы n — число признаков, l — число объектов (длина обучающей выборки). Далее в столбцах приведены результаты решения задачи классификации при оптимизации параметров алгоритма (порога ρ и доли P) по двум критериям: % ошибок классификации err и числу отклассифицированных объектов l_c ($l-l_c$ = число отказов от классификации). Локальная оптимизация параметров алгоритма производилась методом Гаусса-Зейделя, а их оптимальные значения ρ_{min} и P^* даны вместе с err.

Данные первых четырёх задач имеются в репозитории UCI Machine Learning (ссылка дана выше). Задача № 5 (Two norm) на разделение двух нормальных 20-мерных распределений взята с сайта Университета в Торонто²; алгоритм классификации CART (см. Breiman L., Friedman J. H., Olshen R. A. and Stone C. J. Classification and Regression Trees. Wadsworth International Group: Belmont, California) при длине обучающей выборки в 300 прецедентов показал на ней 22.1% ошибок, что почти в 10 раз больше идеального минимума теоретического классификатора ДЛЯ дискриминантной функции Фишера. Задачи № 6 Lung cancer (Рак легких), № 7 Cirrhosis (Цирроз печени) и № 8 Cloud-seeding (Наблюдение облачности) взяты с сайта системы StatLib статистического программного обеспечения 3 .

Nº	Задача	n	l	l_c	err ρ _{min} ; P*	l_c	err ρ _{min} ; P*
1.	Liver Disorders	6	345	22	13.6% 0.30; 0.01	79	29.1% 0.30; 0.20
2.	Glass identification	9	146	28	10.00% 0.15; 0.05	59	16.90% 0.30; 0.20
3.	Wine	13	130	76	02.00% 0.25; 0.05	85	08.20% 0.30; 0.20
4.	Wine quality	11	130	83	08.40% 0.25; 0.05	141	13.50% 0.30; 0.20
5.	Two norm	20	354	206	12.10% 0.15; 0.15	233	15.20% 0.30; 0.20
6.	Lung cancer	8	137	18	05.50% 0.01; 0.01	98	25.50% 0.05; 0.05
7.	Cirrhosis	19	276	33	21.00% 0.05; 0.05	83	37.79% 0.30; 0.20
8.	Cloud-seeding	5	108	7	28.00% 0.15; 0.05	20	30.00% 0.15; 0.15

6. Анализ результатов и выводы

С одной стороны, относительно свойств АФП в литературе можно найти утверждения, что он может быть применён для решения некоторых задач распознавания образов, так как представляет собой удобное средство для формализации символьных моделей машинного обучения. Также

 $^{^2\,}$ http://www.cs.toronto.edu/ delve/data/twonorm/desc.html

³ http://lib.stat.cmu.edu/datasets, страницы /veteran, /pbc и /cloud соответственно.

утверждается, что данный метод «нашел успешное широкое применение в информатике, в частности, при решении задач классификации по положительным и отрицательным примерам, медицинской диагностики (и др.)» [12].

С другой — для полученных нами данных справедливы следующие наблюдения.

- 1. Применение метода бикластеризации с оптимизацией параметров позволило улучшить качество классификации относительно результатов модернизированного алгоритма АФП весьма незначительно (в задаче № 1 лишь на 3%).
- 2. Во всех случаях наблюдалась достаточно высокая и, как правило, неприемлемая на практике доля отказов от классификации.
- 3. Во всех случаях наблюдался достаточно высокий и, как правило, неприемлемый на практике процент ошибок.
- 4. При попытках подстройки параметров алгоритма с целью уменьшения доли отказов обычно наблюдался сильный в разы рост количества ошибок, хотя встречаются и случаи его незначительного роста (задача № 8); при этом число прецедентов, поддающихся классификации, могло вырасти весьма значительно (задача № 6).

Кроме того, анализ свойств порождаемых гипотез при разных значениях параметров и критериев оптимизации показал, что часто гипотезы разных классов вкладывались друг в друга. Геометрически это означает сильное пересечение выпуклых оболочек классов, а данный факт составляет специфику рассмотренных задач. Естественно предположить, что если бы классы менее диффундировали друг в друга, бикластеризация и классический метод АФП могли бы показать более впечатляющие «улучшения» расположения Для результаты. классов распознавания образов применяют методы преобразования признакового пространства. Однако не следует забывать, что практические задачи классификации могут и не иметь удовлетворительных решений в исходных постановках. В этих случаях возможно эффективно применение методов повышения компактности данных [11].

В результате анализа применения подходов на основе АФП к решению задач классификации, можно сделать следующие выводы.

- 1. Без модификации и/или глубокой предобработки данных методы классификации на основе АФП могут использоваться лишь на этапах предварительной классификации.
- 2. Известная идея в модификации прямого подхода АФП развитие методов порождения гипотез. Полезными здесь является учёт специфики конкретной предметной области и «подстройка» под неё гипотез и алгоритмов; при этом важную информацию

- могут нести значения параметров $ho_{min}, P^*, \sigma_{min}$ и им подобных.
- 3. Возможна также разработка и применение более тонких правил классификации, использующих, например, веса объектов, признаков, гипотез и т.д.
- 4. Перспективным направлением является построение на основе АФП методов преобразования признакового пространства, в т. ч. с использованием оценок компактности данных.

Литература

- 1. Ganter B., Wille R. Formal Concept Analysis: Mathematical Foundations. Springer, 1999. 314 c.
- 2. Кузнецов С. О. Теория решёток для интеллектуального анализа данных. [HTML] (http://vorona.hse.ru/sites/infospace/podrazd/facul/facul_bi/opm/DocLib3/ИОПF/\book.pdf).
- 3. Биркгоф Г. Теория решёток. М.: Наука, 1984. 380 с.
- 4. Оре О. Теория графов. М: Наука, 1980. 336 с.
- 5. Гуров С. И. Упорядоченные множества и универсальная алгебра (вводный курс). М.: Издат. отд. ф-та ВМиК МГУ, 2004. 100 с.
- 6. Финн В. К. О машинно-ориентированной формализации правдоподобных рассуждений в стиле Ф.Бэкона-Д.С.Милля. / Семиотика и информатика. 1983., вып. 20. С. 35-101.
- 7. Mirkin B. G. Mathematical Classification and Clustering. Kluwer Academic Publishers, 1996.
- 8. Игнатов Д. Методы бикластеризации для анализа Интернет-данных. [HTML] (http://citforum.ru/consulting/BI/biclustering).
- 9. Игнатов Д. И. Модели, алгоритмы и программные средства бикластеризации на основе замкнутых множеств. Автореферат дисс. уч. степ. канд. техн. наук. Спец. 05.13.18 «Математ. моделирование, числен. методы и комплексы программ».
- 10. Kuznetsov S. O. On stability of a formal concept. In San Juan, E., ed.: JIM, Metz, France (2003).
- 11. Гуров С. И., Долотова Н. С., Фатхутдинов И. Н. «Некомпактные» задачи распознавания. Синтез схем по Э. Гильберту. / Spectral and Evolution Problems: Proceedings of the 17th Crimean Autumn Mathematical School-Symposium. Simferopol: Crimean Scientific Center of Ukrainian National Academy of Sciences. 2007. V. 17. C. 37-44.
- 12. Анализ формальных понятий. [HTML] (http://www.machinelearning.ru/wiki/index.php?title=Анализ формальных понятий).