*Чэнь Жань*¹, *Юрий Ожигов*^{2 3}, *Ю Цзянчуань*⁴ КАЧЕСТВЕННАЯ МОДЕЛЬ ПОЛОЖИТЕЛЬНОГО ИОНА ПЕРЕКИСИ ВОДОРОДА В ТЕРМИЧЕСКОЙ ВАННЕ

Введение

Построение компьютерной модели химических реакций является актуальной задачей, главное препятствие на пути ее решения — проблема сложности. Ассоциация атомов в молекулу предполагает утечку энергии в виде фотонов различных мод, и точное рассмотрение такой задачи уже для довольно простых молекул представляется очень трудным из-за ключевой роли электромагнитного поля химии. Ограничение В размерности задачи путем перехода к конечномерной модели квантовой электродинамики представляется наилучшим решением, тем более что в прикладных задачах начальные условия сближения атомов часто можно считать известными и фиксированными (исключение представляют только процессы типа взрывов).

Большинство работ по квантовой химии посвящены точному вычислению энергий связи (например, [1]) и конформаций молекул. Подходы к химической динамике классифицируют связи между атомами без полного учета динамики поля ([2]), например, изучение различных фазовых переходов в расплавах элементов путем упрощения химических связей([3]). В работах такого типа упор делается на возможно более точное определение энергий связи и спектра молекул, а не на масштабирование модели на большие ансамбли; коллективные квантовые эффекты ([4]) исследуются, В основном, применительно уже К существующим технологиям. Немарковская динамика также изучается в связи с влиянием фононов (см., например, [5]). Развитие квантовой ([6]) электродинамики В полостях позволяет реализовать более совершенные операции в квантовых электродинамических системах, а также дает новые способы управления системами "поле + вещество".

¹Московский Государственный Университет имени М.В.Ломоносова, Факультет вычислительной математики и кибернетики, e-mail: st02210115@gse.cs.msu.ru.

²Московский Государственный Университет имени М.В.Ломоносова, Факультет вычислительной математики и кибернетики, e-mail: ozhigov@cs.msu.ru

³Физико-технологический институт РАН имени К.А.Валиева.

⁴Московский Государственный Университет имени М.В.Ломоносова, Факультет вычислительной математики и кибернетики, e-mail: youjiangchuan2021@gmail.com.

В многоатомных системах кроме поля должно быть включено также и термическое воздействие среды в виде тепловых фононов, имеющих меньшие длины волн (см, например, [7]).

Между тем вычислительные модели химии на квантовом уровне имеют самостоятельную ценность, поскольку они помогают построить математический квантовой аппарат для физики сложных новый процессов, которого в настоящее время пока нет. Препятствием здесь является экспоненциально растущая сложность реальных процессов микромира, которая не позволяет масштабировать стандартные модели до сотен И тысяч атомов даже с применением современных суперкомпьютеров. Стремление к точности для простых двухатомных молекул исключает получение даже приблизительной качественной картины химического сценария для многих атомов.

Квантовое описание многомодового электромагнитного поля, взаимодействующего с атомами, требует наибольших вычислительных ресурсов. Поэтому целесообразным представляется использование модели Джейнса-Каммингса (ЈС модель — см. [8] а также [9]), сводящей многомодовую динамику к простой одномодовой картине взаимодействия двух-уровневого атома или молекулы в оптической полости. с одномодовым полем внутри нее так, что частота фотона ω. удерживаемого в полости с большой точностью совпадает с частотой возбуждения электронной оболочки молекулы. Мы будем рассматривать двухатомную молекулу с одним связывающим атомы валентным электроном, так что основное состояние электрона, обозначаемого далее через $|\Phi_0\rangle$, будет связывать атомы, а возбужденное состояние $|\Phi_1\rangle$ разрыхлять их.

Здесь взаимодействие атома с полем внутри полости выражается через гамильтониан

$$H_{JC} = H_0 + H_{int}, \ H_0 = \hbar \omega a^+ a + \hbar \omega \sigma^+ \sigma, \ H_{int} = H_{int}^{RWA} + H_{int}^{strong},$$

$$H_{int}^{RWA} = g(\sigma^+ a + \sigma a^+), \ H_{int}^{strong} = g(\sigma^+ a^+ + \sigma a),$$
(1)

где a, a^+ — полевые операторы уничтожения и рождения фотона основной моды, а σ, σ^+ — операторы релаксации и возбуждения атома соответственно. Для слабых взаимодействий, характерных для химических реакций, мы имеем $g/\omega \ll 10^{-2}$; в этом случае можно опустить не сохраняющий энергию член H_{int}^{strong} в гамильтониане, получив оператор энергии в виде приближения вращающейся волны:

$$H_{JC}^{RWA} = \hbar \omega a^+ a + \hbar \omega \sigma^+ \sigma + g(\sigma^+ a + \sigma a^+), \qquad (2)$$

которым мы и будем пользоваться в дальнейшем, модифицируя его для динамики атомных ядер и электронных состояний в молекуле.

Описание модели

Мы будем рассматривать процесс ассоциации - диссоциации молекулы перекиси водорода OH^+ с одним удаленным электроном

ковалентной связи, так что эта связь обеспечивается только одним оставшимся электроном. Мы предполагаем, что этот электрон может туннелировать между ядрами атомов кислорода и водорода таким образом, что два его стационарных состояния — основное $|\Phi_0\rangle$ и возбужденное $|\Phi_1\rangle$ определяют силу связи двух атомов в молекулярный ион.

Согласно общепринятой записи молекулярных состояний электрона (МО) как линейной комбинации атомных орбиталей (ЛКАО), мы ищем молекулярные состояния в виде

$$|\Phi_0
angle=\lambda_O^0|O
angle+\lambda_H^0|H
angle,\;|\Phi_1
angle=\lambda_O^1|O
angle+\lambda_H^1|H
angle,$$

где $|O\rangle$, $|H\rangle$ — положения электрона у атомов кислорода и водорода соответственно, а амплитуды λ обладают тем свойством, что

$$|\lambda_O^0| > |\lambda_H^0|, \ |\lambda_O^1| < |\lambda_H^1|.$$

Это вытекает из способа нахождения молекулярных состояний как собственных векторов оператора туннелирования $H_{tun} = \frac{a}{2}(I - \sigma_z) - g\sigma_x$, где a > 0 — разность потенциалов электрона у кислорода и водорода, а g > 0 обратно пропорцианально высоте потенциального барьера между этими атомами по отношению к ковалентному электрону. Простой расчет дает значение $\delta E = \sqrt{a^2 + 4g^2}$ для энергетическоцй щели между молекулярными орбиталями. При удалении ядер атомов условная величина барьера 1/g растет и щель уменьшается; при этом меняются и сами состояния $|\Phi_0\rangle$, $|\Phi_1\rangle$ — последним эффектом мы пренебрежем, тем более что мы не будем учитывать эти орбитали в базисных состояниях модели. Расстояние между атомными ядрами будет учитываться только в виде влияния на энергии взаимодействия с полем этих состояний. В оптической полости, В которой размещены атомы, энергия взаимодействия выражается в виде

$$g = \sqrt{\frac{\hbar\omega}{V}} E(x) d_{0,1}$$

где $d_{0,1}$ — матричный элемент дипольного перехода между орбиталями, который меняется медленнее, чем частота ω , так что для близкого расстояния между ядрами коэффициент *g* будет выше, чем для дальнего. Вариация частоты ω приведет к быстрой утечке фотона перехода между $|\Phi_0\rangle$ и $|\Phi_1\rangle$, так что нахождение нашей системы в полости не является определяющей деталью модели.

Нашей целью является: а) установление характера осцилляций электрона между положениями $|O\rangle$ и $|H\rangle$ и его качественная зависимость от положений атомных ядер, и б) зависимость вероятностей каналов реакции $O + H^+ \leftrightarrow OH^+$ от начальных условий и параметров модели.

Заметим, что осцилляции для пункта а) определяются не оператором H_{tun} , а полным гамильтонианом H_{JC}^{RWA} , то есть взаимодействием молекулярных орбиталей с электромагнитным полем.

25

Мы предполагаем, что ядра атомов O и H обладают очень малой кинетической энергией, так что ковалентная связь между атомами может существовать, хотя и является очень непрочной. На динамику ядер влияние оказывает не только состояние связывающего их электрона, но и фононы термической ванны, в которую погружена пара рассматриваемых атомов. Взаимодействие ядер с фононами можно выразить гамильтонианом

$$H_{term} = g_c(b^+\sigma_c + b\sigma_c^+),$$

где b, b^+ — фононные операторы уничтожения и рождения, а σ_c, σ_c^+ — операторы релаксации и возбуждения динамики ядер. Однако включение числа фононов непосредственно в базисные состояния привело бы к неоправданному росту необходимой памяти, поэтому мы ограничимся предположением, что среднее число фононов m_{ev} меняется очень медленно по сравнению с осцилляциями ядер, так что можно записать взаимодействие H_{term} в виде $H_{term} = g_c(\sigma_c^+ + \sigma)$, где $g_c = g_0 \sqrt{m_{ev}}$.

Для нахождения зависимости коэффициента g_c от температуры фононной ванны мы обратимся к результату работы [10], где было доказано, что термическая стабилизация в модели Джейнса-Каммингса в RWA приближении для обмена бозонами между средой и полостью дает состояние бозонного поля вида

$$G_T = c \cdot \sum_{n=0}^{\infty} e^{-\frac{\hbar\omega_c n}{KT}} |n\rangle \langle n|,$$

где ω_c — частота бозонов обмена между средой и полостью, T — температура внутри полости, K — постоянная Больцмана, а коэффициент $\mu = e^{-\frac{\hbar\omega_c}{KT}}$ совпадает с частным $\mu = \gamma_{in}/\gamma_{out}$ - отношением амплитуды притока и стока бозонов в полость. Зная эти амплитуды, можно найти температуру внутри полости.

Итак, базисные состояния для атомной динамики будут иметь вид

$$|n\rangle|el\rangle|nuc\rangle,$$

где n = 0, 1 — число свободных фотонов в полости, el = 0, 1 — состояние валентного электрона — основное и возбужденное соответственно, *пис* основное и возбужденное динамическое состояние атомных ядер. Для ядер мы будем, условно, считать, что *пис* = 0 означает основное состояние ядер, когда они находятся вблизи и наличие ковалентной связи определяется состоянием электрона ($|\Phi_0\rangle$ — есть связь, $|\Phi_1\rangle$ - нет связи), а *пис* = 1 означает нахождение ядер вдали, когда их кинетическая энергия больше и ковалентной связи нет. Коэффициент g_c взаимодействия динамики ядер с фононами будет зависеть как от температуры *T* фононной моды внутри полости, так и от состояния электрона: для основного состояния электрона он будет меньше.

Наконец, мы будем предполагать, что фотон электронного возбуждения быстро удаляется из полости, то есть "температура" фотонов стремится к нулю. В этих предположениях для нахождения конечных вероятностей каналов реакции ассоциации - диссоциации мы будем иметь гамильтониан вида

$$H = H_0 + g_c(el)(\sigma_c^+ + \sigma_c) + g_{el}(nuc)(a^+\sigma_{el} + a\sigma_{el}^+),$$

$$H_0 = \hbar\omega_c \sigma_c^+ \sigma_c + \hbar\omega_{el} \sigma_{el}^+ \sigma_{el} + \hbar\omega_{el} a^+ a.$$
(3)

Результаты компьютерного моделирования

Итак, у нас имеются только такие 6 базовых состояний:

 $|000\rangle$, $|001\rangle$, $|010\rangle$, $|011\rangle$, $|100\rangle$, $|101\rangle$.

Запишем гамильтониан (3) в следующем матричном виде:

	000 angle	$ 001\rangle$	$ 010\rangle$	$ 011\rangle$	$ 100\rangle$	$ 101\rangle$
$ 000\rangle$	0	$g_c(0)$	0	0	0	0
$ 001\rangle$	$g_c(0)$	$\hbar \omega$	0	0	0	0
$ 010\rangle$	0	0	$\hbar\omega_{el}$	$g_c(1)$	$g_{el}(0)$	0
$ 011\rangle$	0	0	$g_c(1)$	$\hbar\omega_{el} + \hbar\omega$	0	$g_{el}(1)$
$ 100\rangle$	0	0	$g_{el}(0)$	0	$\hbar \omega_{el}$	$g_c(0)$
$ 101\rangle$	0	0	0	$g_{el}(1)$	$g_c(0)$	$\hbar\omega_{el} + \hbar\omega$

 $g_{el}(0) \gg g_{el}(1) > g_c(1) \gg g_c(0)$

Релаксация атомной системы будет представляться в виде решения квантового основного уравнения (КОУ):

$$i\hbar\dot{\rho} = [H,\rho] + iL(\rho),$$

где $L(\rho)$ - оператор Линдблада, имеющий в общем случае вид:

$$L(\boldsymbol{\rho}) = \sum_{j=1}^{N} \gamma_j \left(A_j \boldsymbol{\rho} A_j^+ - \frac{1}{2} \left(\boldsymbol{\rho} A_j^+ A_j + A_j^+ A_j \boldsymbol{\rho} \right) \right).$$

Поскольку оператор Линдблада дает добавку малую по сравнению с унитарной динамикой, использование метода Эйлера для его решения вполне достаточно. В нашем случае его удобно представить в виде итерации двух шагов:

1.
$$\rho'(t + \Delta t) = e^{-iH\Delta t}\rho e^{iH\Delta t}$$
,
2. $\rho(t + \Delta t) = \rho'(t + \Delta t) + L(\rho'(t + \Delta t))\Delta t$.

Для упрощения расчета мы использовали следующие значения параметров, удовлетворяющих поставленным условиям:

$$\begin{split} \hbar &= 1, \Delta t = 0.01, \mu = \frac{\gamma_{in}}{\gamma_{out}} = 0.4, \\ g_{el}(0) &= 6 * 10^7 \gg g_{el}(1) = 6 * 10^4 > g_c(1) \gg g_c(0), \\ g_c(1) &= 4 \cdot 10^3 \cdot e^{-0.1t} \to 0, g_c(0) = 4 \cdot e^{-0.1t} \to 0, \end{split}$$

где $t = iteration * \Delta t$, $iteration \in [0, 6000]$ iteration - количество итераций.

Результаты расчетов дают следущие распределения вероятностей базиных состояний системы в зависимости от времени:

Рис. 1. Начальное состояние: $|010\rangle$ Рис. 2. Начальное состояние: $|011\rangle$ $\omega_{el} = 2\omega_c = 0.4$

(001)

10001

60

50

Рис. 3. Начальное состояние: $|010\rangle$ Рис. 4. Начальное состояние: $|011\rangle$ $\omega_{el} = 2\omega_c = 4$

Рис. 5. Начальное состояние: $|010\rangle$ Рис. 6. Начальное состояние: $|011\rangle$ $\omega_{el} = 2\omega_c = 400$

Результирующие распределения вероятностей, таким образом, сильно зависят не только от начальных условий, но и от абсолютных величин частот электронных переходов и тепловых фононов (рисунки 1 и 3). В частности, для малых частот, при приближении к границе применимости приближения вращающейся волны, наблюдаются заметные осцилляции вероятности формирования ковалентной связи (рисунки 2 и 4). Для больших частот электронных переходов, где приближение вращающейся волны очень точно, наблюдается плавное поведение вероятности ассоциации в молекулу (рис. 5 и 6).

Частоты перехода электронов в потенциальные ямы разной глубины

Рассмотрим теперь более детально динамику электрона В ковалентной связи, образованной между условными атомами кислорода и пренебрегаем эффектами, связанными водорода. Мы формой С электронных облаков валентных атомов, представляя валентный электрон как частицу, туннелирующую между двумя потенциальными ямами, как показано на рисунке 7:

Рис. 7. Основная и возбужденная орбитали

Здесь глубины потенциальных ям связаны условием: $\alpha > \beta$, поскольку атом кислорода гораздо сильнее притягивает электрон, по сравнению с атомом водорода. Собственные состояния электрона будут иметь вид

$$|\Psi_0
angle=rac{lpha|O
angle+eta|H
angle}{\sqrt{|lpha|^2+|eta|^2}}, \; |\Psi_1
angle=rac{-eta|O
angle+lpha|H
angle}{\sqrt{|lpha|^2+|eta|^2}},$$

где $|O\rangle$ и $|H\rangle$ — орбитали возбужденного состояния атомов кислорода и водорода соответственно. $|\Psi_0\rangle$ и $|\Psi_1\rangle$ — гибридные (молекулярные) орбитали, соответствующие основному и возбужденному состояниям соответственно.

Гамильтониан нашей задачи имеет вид: $H = \hbar \omega a_{\omega}^{+} a_{\omega} + \hbar \omega \sigma_{\omega}^{+} \sigma_{\omega} + g_{mol}(a_{\omega}^{+} \sigma_{\omega} + a_{\omega} \sigma_{\omega}^{+}),$

где операторы релаксации — возбуждения, как и полевые, относятся уже к молекуле *OH*. Таким образом, $a_{\omega}\sigma_{\omega}^+$ отражает процесс поглощения электроном фотона при переходе из основного состояния в возбужденное, а $a_{\omega}^+\sigma_{\omega}$ — наоборот, испускание фотона при переходе из возбужденного состояния в основное. $g_{mol} = \frac{1}{L}$ — есть энергия взаимодействия электрона с полем, *L*-условное расстояние между атомами. Матричное представление гамильтониана имеет вид

		$ 0 angle \Psi_0 angle$	$ 0 angle \Psi_1 angle$	$ 1 angle \Psi_0 angle$	$ 1 angle \Psi_1 angle$
	$ 0 angle \Psi_0 angle$	0	0	0	0
H =	$ 0 angle \Psi_1 angle$	0	$\hbar\omega$	8 _{mol}	0
	$ 1 angle \Psi_0 angle$	0	8mol	$\hbar\omega$	0
	$ 1 angle \Psi_1 angle$	0	0	0	2ħω.

Найдем аналитически решение уравнения Шредингера по стандартной формуле

 $|\Psi(t)\rangle = \sum_{j} e^{\frac{-i}{\hbar}E_{j}t} \lambda_{j} |\psi_{j}\rangle$, где $\lambda_{j} = \langle \Psi(0) |\psi_{j}\rangle, |\psi_{j}\rangle$ — собственный вектор гамильтониана Н, E_{j} — соответствующее собственное значение, и $|\Psi(0)\rangle = |0\rangle_{ph}|O\rangle = \frac{\alpha|0\rangle_{ph}|\Psi_{0}\rangle - \beta|0\rangle_{ph}|\Psi_{1}\rangle}{\sqrt{\alpha^{2}+\beta^{2}}}$. Мы имеем:

$$E_{1} = \hbar \omega - g_{mol}, |\psi_{1}\rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0 \end{pmatrix}, E_{2} = \hbar \omega + g_{mol}, |\psi_{2}\rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix},$$
$$E_{3} = 2\hbar \omega, |\psi_{3}\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Откуда

$$\begin{split} |\Psi(t)\rangle = &\frac{2\alpha^{2} + \beta^{2}(e^{iE_{1}t} + e^{iE_{2}t})}{2(\alpha^{2} + \beta^{2})}|0\rangle|0\rangle + \frac{\alpha\beta(e^{iE_{1}t} - e^{iE_{2}t})}{2(\alpha^{2} + \beta^{2})}|1\rangle|0\rangle + \\ &+ \frac{2\alpha\beta - \alpha\beta(e^{iE_{1}t} + e^{iE_{2}t})}{2(\alpha^{2} + \beta^{2})}|0\rangle|H\rangle + \frac{-\beta^{2}(e^{iE_{1}t} - e^{iE_{2}t})}{2(\alpha^{2} + \beta^{2})}|1\rangle|H\rangle. \end{split}$$

После упрощения получаем вероятность $P(|O\rangle)$ появления электрона в первой яме (на первом атоме):

$$P(|O\rangle) = P(|0\rangle|O\rangle) + P(|1\rangle|O\rangle) =$$

= $\frac{1}{4(\alpha^2 + \beta^2)^2} (|2\alpha^2 + \beta^2(e^{iE_1t} + e^{iE_2t})|^2 + \alpha^2\beta^2|e^{iE_1t} - e^{iE_2t}|^2) =$
= $\frac{1}{4(\alpha^2 + \beta^2)^2} (C + \beta^2 \frac{\beta^2 - \alpha^2}{2} \cos 2g_{mol}t + 2\alpha^2\beta^2 \cos \hbar\omega t \cos g_{mol}t).$

Здесь $C = \alpha^4 + \frac{\beta^4}{2} + \frac{\alpha^2 \beta^2}{2}$. Нижеследующие графики представляют полученное решение.

Рис. 8. Вероятность появления электрона вблизи атома кислорода, когда в резонаторе не происходит утечки фотонов.

Рис. 9. Вероятность появления электрона вблизи атома кислорода, есть утечка фотона (декогеренция A = a в КОУ).

Здесь $P(|O\rangle)$ стремится к $y = \alpha^2$. Мы видим, что электроны при релаксации имеют большую вероятность оказаться в более глубоких потенциальных ямах, что и следовало ожидать.

Выводы

Мы предложили простую модель для исследования процессов ассоциации и диссоциации двух различных атомов - кислорода и водорода, ковалентная связь между которыми осуществляется одним электроном. Наша модель включает взаимодействие двух молекулярных орбиталей электрона с полем, простейший вариант движения ядер и влияние температурного фактора среды на это движение.

Установлено, что при различных начальных условиях преобладающим каналом реакции будет образование пары O, H^+ . При этом конкретная вероятность каналов реакции с образованием такой пары и пары O^+, H зависит от начального условия. Установлена также

31

интересная зависимость вероятностей каналов с этими продуктами реакции от скорости охлаждения окружающей среды.

Эти результаты показывают, что нашу простую модель можно распространить на ансамбли из сотен атомов, принимая во внимание как электромагнитное поле, так и тепловые фононы окружающей среды. Такое масштабирование способно дать хороший инструмент для поиска важных многочастичных эффектов квантовой природы в химии.

Литература

- 1. *Maciej Hendzel, Maciej Fidrysiak, and Józef Spa-lek.* Towards Complementary Characterization of the Chemical Bond, :J. Phys. Chem. Lett 13, 10261-10266, 2022.
- 2. *Holger F. Hofmann.* A dynamical model of the chemical bond: kinetic energy resonances between atomic orbitals, Eur. J. Phys. 18 (1997) 354-362.
- 3. *HShlomi Matityahu, Nathan Argaman.* A classical many-body model of covalent bonding with exact solutions in one dimension, Phys. Rev. E 99, 022140 (2019)
- 4. Lewis W. Anderson, Martin Kiffner, Panagiotis Kl. Barkoutsos Coarsegrained intermolecular interactions on quantum processors, Phys. Rev. A 105, 062409 (2022)
- 5. *Matias Bundgaard-Nielsen, Jesper Mørk, Emil Vosmar Denning.* Non-Markovian perturbation theories for phonon effects in strong-coupling cavity quantum electrodynamics, Phys. Rev. B 103, 235309 (2021)
- 6. Frank Schlawin, Dante M. Kennes, Michael A. Sentef. Cavity Quantum Materials, Applied Physics Reviews 9, 011312 (2022)
- 7. O. O. Soykal, Rusko Ruskov, Charles Tahan. Phonitons as a sound-based analogue of cavity quantum electrodynamics, Phys. Rev. Lett. 107, 235502 (2011)
- 8. *E.T. Jaynes, F.W. Cummings.* Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1): 89–109, (1963). doi:10.1109/PROC.1963.1664
- 9. *Michael Thomas Tavis*. A Study of an N Molecule Quantized-Radiation-Field Hamiltonian, Dissertation, https://arxiv.org/abs/1206.0078.
- Ozhigov Y.I., Kulagin A.V., Ladunov V.Y., Skovoroda N.A., Victorova N.B. Homogeneous atomic ensembles and single-mode field: review of simulation results, Proceedings of SPIE, International Conference on Micro- and Nano-Electronics, серия 11022, SPIE, the International Society for Optical Engineering (Bellingham, WA, United States), vol. 11022, pp. 110222C-1-110222C-12