И.А. Павельчак

МЕТОД ЧИСЛЕННОГО РЕШЕНИЯ ЗАДАЧИ ОПРЕДЕЛЕНИЯ ИСТОЧНИКА В МОДЕЛИ ФИТЦ-ХЬЮ-НАГУМО^{*}

Введение

В настоящее время методы математического моделирования широко применяются при изучении проблем медицины и биологии. Среди разнообразных явлений, исследуемых математическими методами, значительный интерес представляют процессы распространения волн в возбудимых средах, в частности распространение нервных импульсов в миокарде. Наиболее известной математической моделью, описывающей процесс возбуждения электрического поля в сердечной мышце или системе нервов, является модель Фитц-Хью–Нагумо [1,2], представляющая собой начально-краевую задачу для эволюционных уравнений в частных производных.

Важное значение для развития математических методов диагностики в медицине имеет исследование соответствующих обратных задач и разработка методов их решения. Обратные задачи для математических моделей возбуждения сердца рассматривались в ряде работ, см. например, [3–7].

Данная статья посвящается разработке численного метода решения обратной задачи для модели Фитц-Хью–Нагумо, состоящей в определении локализованного источника возбуждения по измерениям, проводимым на внешней границе области. Приводятся вычислительные эксперименты, иллюстрирующие работу предложенного метода.

Постановка задачи

Рассмотрим модель Фитц-Хью-Нагумо

$u_t = D\Delta u - u(u - \alpha)(u - 1) - w + \chi(x, y; \lambda),$	$(x,y) \in G, t \in (0,T],$	(1)
$w_t = \beta u - \gamma w$,	$(x,y) \in G, t \in (0,T],$	(2)
$\frac{\partial u}{\partial n}(x,y,t) = 0,$	$(x, y) \in \Gamma, t \in (0, T],$	(3)
u(x, y, 0) = 0,	$(x,y) \in G$,	(4)
w(x, y, 0) = 0,	$(x,y) \in G$,	(5)

[^] Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (код проекта 11-01-00259).

где *G* – ограниченная область с границей Г; *D*, α , β , γ – положительные постоянные. Функция $\chi(x, y; \lambda)$ описывает источник возбуждения и имеет вид

$$\chi(x, y; \lambda) = A_0 e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{\sigma^2}} e^{-\frac{(t-t_0)^2}{\theta^2}},$$

где A_0, σ, θ –известные константы, а $(x_0, y_0) \in G$ и $t_0 \in [0, T]$. Такое представление функции источника позволяет поставить обратную задачу, состоящую в определении как пространственных координат источника возбуждения (x_0, y_0) , так и времени его возникновения t_0 .

Сформулируем обратную задачу. Пусть постоянные D, α , β , γ , A_0, σ, θ заданы, а параметры x_0, y_0, t_0 неизвестны. Требуется найти их, если на множестве $\Gamma \times [0, T]$ известно решение задачи (1)–(5)

 $u(x,y,t)=\psi(x,y,t),\quad (x,y)\in \ \Gamma,\ t\ \in [0,T].$

Численный метод решения обратной задачи

Рассмотрим численный метод решения сформулированной обратной задачи. Обозначим через $\bar{\lambda} = (\bar{x}_0, \bar{y}_0, \bar{t}_0)$ точные значения неизвестных параметров. Пусть $\bar{u}(x, y, t; \bar{\lambda})$ – решение задачи (1)–(5), соответствующее $\bar{\chi} = \chi(x, y; \bar{\lambda})$. Обозначим через $\bar{\psi}(x, y, t)$ значения $\bar{u}(x, y, t; \bar{\lambda})$ при $(x, y, t) \in \Gamma \times [0, T]$. Будем считать, что функция $\bar{\psi}(x, y, t)$, нам неизвестна, а вместо неё задана функция $\psi_{\delta}(x, y, t)$, такая, что

$$\int_{0}^{T} \int_{\Gamma} (\psi_{\delta}(x, y, t) - \overline{\psi}(x, y, t))^{2} dl dt \leq \delta^{2}.$$

В качестве приближенного решения обратной задачи будем рассматривать такие значения параметров $\lambda = (x_0, y_0, t_0)$, для которых

$$\int_{0}^{T} \int_{\Gamma} (u(x, y, t; \lambda) - \psi_{\delta}(x, y, t))^{2} dl dt \leq \delta^{2}.$$

Тогда решение обратной задачи сводится к минимизации функции

$$\Phi(\lambda) = \int_0^1 \int_{\Gamma} (u(x, y, t; \lambda) - \psi_{\delta}(x, y, t))^2 dl dt.$$

Для минимизации $\Phi(\lambda)$ будем использовать метод градиентного спуска.

Рассмотрим вопрос нахождения градиента функции $\Phi(\lambda)$. Найдем её приращение $\delta \Phi$. Введем функцию $f(u) = u(u - \alpha)(u - 1)$. Обозначим через $\delta \lambda = \{\delta x_0, \delta y_0, \delta t_0\}$ приращение вектора параметров. Пусть функ-

ции $\chi(x, y; \lambda)$ соответствует решение задачи (1)–(5) { $u(x, y, t; \lambda)$, $w(x, y, t; \lambda)$ }, а функции $\chi(x, y; \lambda + \delta\lambda)$ соответствует решение { $u(x, y, t; \lambda + \delta\lambda)$, $w(x, y, t; \lambda + \delta\lambda)$ }. Обозначим

$$p(x, y, t; \lambda, \delta\lambda) = u(x, y, t; \lambda + \delta\lambda) - u(x, y, t; \lambda),$$
$$q(x, y, t; \lambda, \delta\lambda) = w(x, y, t; \lambda + \delta\lambda) - w(x, y, t; \lambda).$$

Отметим, что

$$-f(u+p) + \chi(x, y; \lambda + \delta\lambda) + f(u) - \chi(x, y; \lambda) =$$
$$= \sum_{j=1}^{3} \frac{\partial \chi}{\partial \lambda_j} \delta\lambda_j - f'(u)p + \tilde{R}.$$

где $\tilde{R} = O(p^2 + \delta \lambda^2).$

Используя эту формулу получим, что функции *p*, *q* являются решением задачи

$$\frac{\partial p}{\partial t} = D\Delta p - q + \sum_{j=1}^{3} \frac{\partial \chi}{\partial \lambda_j} \delta \lambda_j - f'(u)p - \tilde{R},$$

$$(x, y) \in G, t \in (0, T], \qquad (6)$$

$$\frac{\partial q}{\partial t} = \beta p - \gamma q, \qquad (x, y) \in G, t \in (0, T], \qquad (7)$$

$$\frac{\partial p}{\partial n}(x, y, t) = 0, \qquad (x, y) \in \Gamma, t \in (0, T], \qquad (8)$$

$$p(x, y, 0) = 0,$$
 $(x, y) \in G,$ (9)

q(x, y, 0) = 0, $(x, y) \in G.$ (10)

Рассмотрим приращение функции $\Phi(\lambda)$:

$$\delta \Phi = \Phi(\lambda + \delta \lambda) - \Phi(\lambda) =$$

$$= \int_{0}^{T} \int_{\Gamma} ((u + p - \psi_{\delta})^{2} - (u - \psi_{\delta})^{2}) dl dt =$$

$$= \int_{0}^{T} \int_{\Gamma} (2(u - \psi_{\delta})p + p^{2}) dl dt. \qquad (11)$$

Получим другой вид для приращения функции $\Phi(\lambda)$. Рассмотрим функции a(x, y, t), b(x, y, t), являющиеся решениями начально-краевой задачи

$$\frac{\partial a}{\partial t} = -D\Delta a - \beta b + f'(u)a, \qquad (x, y) \in G, t \in [0, T) \delta \delta \delta,$$
(12)

$$\frac{\partial b}{\partial t} = a + \gamma b, \qquad (x, y) \in G, t \in [0, T), \qquad (13)$$

$$D\frac{\partial a}{\partial n}(x,y,t) = 2(u - \psi_{\delta}), \qquad (x,y) \in \Gamma, t \in [0,T], \quad (14)$$

$$a(x, y, T) = 0,$$
 $(x, y) \in G,$ (15)

b(x, y, T) = 0, (16)

Введем интеграл

$$I = \int_{0}^{T} \iint_{G} \left[a \left(\frac{\partial p}{\partial t} - D\Delta p + q + f'(u)p \right) + b \left(\frac{\partial q}{\partial t} - \beta p + \gamma q \right) + p \left(\frac{\partial a}{\partial t} + D\Delta a + \beta b - (17) - f'(u)a) + q \left(\frac{\partial b}{\partial t} - a - \gamma b \right) \right] \mathbf{b} \mathbf{b} \, ds \, dt.$$

Очевидно, что

$$I = \int_{0}^{T} \iint_{G} \left[(ap + bq)_{t} - (Da\Delta p - Dp\Delta a) \right] ds dt.$$

Используя формулу Грина, а также начальные и граничные условия (8)–(10), (14)–(16), имеем

$$\begin{split} & \coprod \Pi = \iint_{G} (ap + bq)|_{t=0}^{t=T} ds - \\ & - \int_{0}^{T} \int_{\Gamma} \left(Da \frac{\partial p}{\partial n} - Dp \frac{\partial a}{\partial n} \right) dl \, dt = \end{split}$$

$$= \int_{0}^{T} \int_{\Gamma} \left(p2(u-\psi_{\delta}) \right) dl \, dt.$$
 (18)

С другой стороны, из (17), (6), (7), (12) и (13) следует, что

$$I = \int_{0}^{T} \iint_{G} a\left(\sum_{j=1}^{3} \frac{\partial \chi}{\partial \lambda_{j}} \delta \lambda_{j} - \tilde{R}\right) ds \ dt.$$
(19)

Учитывая (18) и (19), выражение (11) для приращения $\Phi(\lambda)$ можно записать в виде

$$\delta \Phi = \int_{0}^{T} \iint_{G} a(\sum_{j=1}^{3} \frac{\partial \chi}{\partial \lambda_{j}} \delta \lambda_{j} - \tilde{R}) ds dt + \int_{0}^{T} \int_{\Gamma} p^{2} dl dt.$$

Пренебрегая величинами второго порядка малости, получим следующее выражение для частных производных функции Φ по параметрам

$$\frac{\partial \Phi}{\partial \lambda_j} = \int_0^T \iint_G a \frac{\partial \chi}{\partial \lambda_j}(x, y; \lambda) ds dt, \quad 1 \le j \le 3.$$
(20)

С помощью вычисленного по формуле (20) градиента строится метод градиентного спуска для минимизации функции $\Phi(\lambda)$. Итерационный процесс останавливается как только выполняется неравенство $\Phi(\lambda) \leq \delta^2$.

Рассмотрим вопрос о выборе начального приближения для неизвестных значений $\bar{\lambda}$. Задача (1)–(5) с локализованным источником описывает распространение кольцевой волны. Опишем алгоритм выбора начального приближения в предположении, что область G, в которой решается задача, ограничена снаружи выпуклой кривой Г₁ и возможно имеет внутреннюю границу, состоящую из нескольких замкнутых выпуклых кривых. В качестве первого приближения возьмем значения \tilde{x}_0 , \tilde{y}_0 , полученные следующим образом. Обозначим через M наибольшее значение функции $\psi(x, y, t)$ при $(x, y) \in \Gamma_1, t \in [0, T]$. Введем вспомогательную функцию $\tau(x, y), (x, y) \in \Gamma_1$, принимающую значения наименьшего времени t, для которого в данной точке границы $\psi(x, y, t) \ge 0.9M$, и равную T, если $\psi(x, y, t) < 0.9M$ в точке $(x, y) \forall t \in [0, T]$. Зададим на внешней границе Γ_1 точки $(x_1, y_1), (x_2, y_2), (x_3, y_3),$ такие, что они делят ее на равные по длине дуги. Найдем точку (x_4, y_4) , такую, что для нее значение функции $\tau(x, y)$ будет минимальным. Выберем из $(x_i, y_i), i =$ 1, ..., 4, три точки (a_i, b_i) , i = 1, 2, 3, следующим образом. Если расстояние между (x_4, y_4) и одной из трех точек (x_i, y_i) , i = 1, ..., 3, меньше

 $L/_{20}$, где L – длина внешней границы, возьмем $(a_i, b_i) = (x_i, y_i), i = 1, 2, 3$. В противном случае возьмем в качестве $(a_i, b_i), i = 1, 2, 3$, точку (x_4, y_4) и две ближайшие к ней точки из $(x_i, y_i), i = 1, ..., 3$. Положим в качестве первого приближения к неизвестным \bar{x}_0, \bar{y}_0

$$x^{0} = \frac{1}{3} \left(\frac{\tau(a_{2}, b_{2})a_{1} + \tau(a_{1}, b_{1})a_{2}}{\tau(a_{1}, b_{1}) + \tau(a_{2}, b_{2})} + \frac{\tau(a_{3}, b_{3})a_{1} + \tau(a_{1}, b_{1})a_{3}}{\tau(a_{1}, b_{1}) + \tau(a_{3}, b_{3})} + \frac{\tau(a_{3}, b_{3})a_{2} + \tau(a_{2}, b_{2})a_{3}}{\tau(a_{2}, b_{2}) + \tau(a_{3}, b_{3})} \right),$$

$$y^{0} = \frac{1}{3} \left(\frac{\tau(a_{2}, b_{2})b_{1} + \tau(a_{1}, b_{1})b_{2}}{\tau(a_{1}, b_{1}) + \tau(a_{2}, b_{2})} + \frac{\tau(a_{3}, b_{3})b_{1} + \tau(a_{1}, b_{1})b_{3}}{\tau(a_{1}, b_{1}) + \tau(a_{3}, b_{3})} + \frac{\tau(a_{3}, b_{3})b_{2} + \tau(a_{2}, b_{2})b_{3}}{\tau(a_{2}, b_{2}) + \tau(a_{3}, b_{3})} \right).$$

Далее это приближение улучшается минимизацией функции

$$F(x, y, w) = \sum_{i=1}^{3} \left(w\tau(a_i, b_i) - \sqrt{(x - a_i)^2 + (y - b_i)^2} \right)^2$$

где (a_i, b_i) – выбранные ранее три точки, а переменная *w* представляет собой приближение скорости распространяющейся волны. Минимизация проводится методом градиентного спуска, в качестве первого приближения w_0 берется его оценка для моделируемой среды. Итерации проводятся до заранее заданной точности либо до заданного их максимального числа. Полученная в результате точка берется в качестве начального приближения для градиентного метода решения обратной задачи \tilde{x}_0 , \tilde{y}_0 .

Для выбора начального приближения \tilde{t}_0 для градиентного метода решения обратной задачи находятся значения невязки

$$\Phi(\tilde{x}_{0}, \tilde{y}_{0}, t_{i}) = \int_{0}^{T} \int_{\Gamma} (u(x, y, t; \tilde{x}_{0}, \tilde{y}_{0}, t_{i}) - \psi_{\delta}(x, y, t))^{2} dl dt$$

для точек $t_i = i * d$ с фиксированным шагом по времени d. В качестве начального приближения берется $\tilde{t}_0 = t_i$, при котором функция $\Phi(\tilde{x}_0, \tilde{y}_0, t_i)$ прдостигает минимум.

Вычислительные эксперименты

Описанный численный метод решения обратной задачи был применен для определения параметров функции источника для модели Фитц-

Хью–Нагумо. Прямая задача (1)–(5) решалась в области G, приближенной к сечению сердца (см. рис. 1–3) с помощью метода конечных элементов; для программной реализации использовалась библиотека deal.II^{*}. Число конечных элементов при расчетах бралось порядка 150000. Во всех вычислительных экспериментах параметры модели были равны: D = 1, $\alpha = 0.15$, $\beta = 0.005$, $\gamma = 0.025$, $\sigma = 36$, $\theta = 36$. В результате решения прямой задачи вычислялась $\overline{\psi}(x, y, t)$ на границе $(x, y) \in \Gamma, t \in [0, T]$, в неё вносилась погрешность и получалась $\psi_{\delta}(x, y, t)$ такая, что

$$\int_{0}^{T} \int_{\Gamma} (\bar{\psi}(x, y, t) - \psi_{\delta}(x, y, t))^{2} dl dt = \delta^{2}$$

Для удобства оценки внесённой погрешности введем переменную $\tilde{\delta}$ такую, что внесенная погрешность δ выражается как

$$\delta^2 = \tilde{\delta} \int_{0}^{T} \int_{\Gamma} \bar{\psi}^2(x, y, t) dl dt.$$

Приведем результаты вычислительных экспериментов для различных областей, приближенных к сечениям сердца, и при различных величинах внесенной погрешности.

A Finite Element Differential Equations Analysis Library (http://www.dealii.org/)

Первая серия вычислительных экспериментов проводилась в области без внутренних границ (см. рис. 1). В таблице 1 приведены результаты работы метода при различных значениях внесённой погрешности.

	<i>x</i> ₀	y_0	t_0
Точные параметры	-30	0	70
Результат при $ ilde{\delta}=0.01$	-29.073	0.55	69.307
Результат при $ ilde{\delta} = 0.05$	-29.756	1.778	67.931
Результат при $ ilde{\delta} = 0.1$	-29.104	2.409	67.834

Таблица 1

В таблице 2 приведены результаты работы метода при различных значениях внесённой погрешности при нахождении источника в области с одним вырезом, изображенной на рис. 2.

Таблица 2

	x_0	${\mathcal{Y}}_0$	t_0
Точные параметры	-35	-45	70
Результат при $ ilde{\delta}=0.01$	-34.526	-44.124	71.051
Результат при $ ilde{\delta} = 0.05$	-33.073	-42.693	72.088
Результат при $ ilde{\delta}=0.1$	-31.315	-41.24	73.599

В таблице 3 приведены результаты работы метода при различных значениях внесённой погрешности при нахождении источника в области с двумя вырезами, изображенной на рис. 3.

Таблица 3

	x_0	y_0	t_0
Точные параметры	-10	0	45
Результат при $ ilde{\delta} = 0.01$	-9.566	0.669	44.224
Результат при $ ilde{\delta} = 0.05$	-8.942	1.239	44.498
Результат при $ ilde{\delta}=0.1$	-9.001	-0.121	44.443

Приведенные результаты вычислительных экспериментов показывают работоспособность описанного численного метода решения задачи

нахождения параметров функции источника возбуждения как для областей простой конфигурации, так и для областей, имеющих внутренние вырезы. При этом искомые параметры находятся с хорошей точностью при небольших значениях погрешности в граничных данных – порядка 1-10%.

Литература

- 1. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane // Bull. Math. Biophysics. 1955. N 17. P. 257–278.
- 2. Nagumo J., Arimoto S., and Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. N 50. P. 2061–2070.
- 3. He Y., Keyes D. E. Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements // Journal of Computational Neuroscience. 2007. **23**. N 2. P. 251–264.
- 4. Sundnes J., Lines G. T., Cai X. et al. Computing the Electrical Activity in the Heart. Springer, 2006.
- 5. А.М. Денисов, В.В. Калинин. Обратная задача для математических моделей возбуждения сердца // Ж. вычисл. матем. и матем. физ. 2010. Т. 50 № 3. с. 539-543.
- И.А. Павельчак. Численный метод определения локализованного начального условия в моделях Фитц-Хью–Нагумо и Алиева– Панфилова // Вестник МГУ. Вычислительная математика и кибернетика. 2011. № 3. с. 7–13.
- 7. И.А. Павельчак, С.Р. Туйкина. Метод численного решения обратной задачи для модифицированной модели Фитц-Хью–Нагумо // Прикладная математика и информатика. 2011. № 37. с. 98-106.