Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА» ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

УТВЕРЖДАЮ

Декан факультета ВМК МГУ

академик РАНтер образования /И.А. Соколов/

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Методы и системы защиты информации, информационная безопасность» «Methods and systems of data protection, information security»

Программа (программы) подготовки научных и научно-педагогических кадров в аспирантуре Методы и системы защиты информации, информационная безопасность (102-01-00-236-фмн)

Рабочая программа дисциплины разработана в соответствии с Приказом Ректора МГУ №1216 от 24 ноября 2021 года «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых Московским государственным университетом имени М.В.Ломоносова»

1. Краткая аннотация:

Программа направлена на подготовку аспирантов к сдаче кандидатского экзамена по специальности «Методы и системы защиты информации, информационная безопасность», в том числе на изучение основных области методов и систем защиты информации, информационной безопасности и криптографии, а также для применения аппарата математических методов и алгоритмов при решении задач информационной безопасности, защиты информации и криптографии.

Особенностью данной программы является применение классических, фундаментальных математических результатов к задачам обеспечения защиты информации, а также рассмотрение вопросов анализа и синтеза новых математических методов защиты информации.

- 2. Уровень высшего образования—подготовка кадров высшей квалификации.
- 3. Научная специальность: 2.3.6. «Методы и системы защиты информации, информационная безопасность».
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры: Дисциплины (модули), направленные на подготовку к кандидатским экзаменам.
- 5. Объем дисциплины (модуля) в зачетных единицах составляет 108 часов, из которых 6 часов составляет контактная работа аспиранта с преподавателем, 102 часа составляет самостоятельная работа.
- 6. Входные требования для освоения дисциплины (модуля), предварительные условия: в специалитете на предыдущих уровнях высшего образования должны быть освоены общие курсы, соответствующие предыдущему уровню образования по специальностям программы.

7. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое содержание разделов и тем		В том числе											
		1	Контактн	ая рабо преп	Самостоятельная работа обучающегося, часы из них								
дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выполнение домашних заданий	Подготовка к коллоквиумам	Всего			
 Математические защиты информации Группы. Кольца и поля. Многочлены. Расширения полей. Конечные поля: характеризация конечных полей, корни неприводимых многочленов. Следы, нормы и базисы. Корни из единицы и круговые многочлены. Представления элементов конечных полей. Многочлены над конечными полями. Порядки многочленов и примитивные многочлены, неприводимые многочлены. Построение 	20		-			-	-	20	-	20			
неприводимых многочленов.										3			

Линеаризованные многочлены. 4. Линейные рекуррентные последовательности. Регистры сдвига с обратной связью. Периодичность. Характеристический многочлен. Производящие функции. Характеризация линейных рекуррентных последовательностей. Распределение элементов в линейных рекуррентных последовательностях. Алгоритм Берлекемпа—Месси. 5. Целочисленные решётки. Фундаментальный параллелепипед. Базисы решётки. Короткие векторы решётки. LLL-приведённый базис решётки. LLL-алгоритм, обоснование его корректности, его вычислительная сложность.										
исправляющих ошибки: задача синдромного декодирования и её NP-полнота, задача о спектре весов и её										
NP-полнота, задача об эквивалентности линейных кодов и её связь с задачей об изоморфизме графов.										
. 1										
2. Криптография с секретным	24	-	-	-	-	2	2	22	-	22

К.	пючом: блочные и поточные шифры, хеш-функции					
O(ощие принципы построения					
кр	иптосистем с секретным ключом.					
Cc	овершенная секретность,					
ЭН	тропия.					
2. По	севдослучайные функции и					
пс	евдослучайные перестановки.					
IN	D-CPA стойкая криптосистема с					
ce	кретным ключом.					
3. Ce	сть Фейстеля и её свойства.					
Ш	ифры, построенные на основе					
ce	тей Фейстеля: DES и Магма.					
4. Бу	левы функции и отображения.					
Πŗ	реобразование Уолша—Адамара					
бу	левой функции. Быстрое					
пр	еобразование Уолша—Адамара.					
	пектральные характеристики					
	левых функций и их основные					
	ойства. Основные					
_	иптографические свойства					
	левых функций: максимальная					
не	линейность, корреляционная					
ИМ	имунность и устойчивость,					
	вершенная уравновешенность,					
	гебраическая иммунность.					
	ифференциальный криптоанализ и					
ЛИ	нейный криптоанализ.					

 6. 	Устойчивость узлов замены блочных шифров к дифференциальному и линейному криптоанализу в терминах свойств булевых отображений. Синтез и анализ поточных шифров. Поточные шифры, построенные на основе регистров сдвига с линейными обратными связями. Линейная сложность. Нелинейные фильтрующие генераторы. Нелинейные комбинирующие генераторы. Криптографические хеш-функции и их приложения. Основные методы криптоанализа хеш-функций, применения парадокса о днях рождения. Построение итерационных хеш-функций на основе блочных шифров, криптоанализ общей схемы.										
1.	3. Криптография с открытым ключом: криптосистемы с открытым ключом и протоколы электронной подписи Односторонние функции с секретом. Понятие криптосистемы с открытым ключом. IND-CPA	41	-	-	-	-	1	1	40	-	40

	стойкая криптосистема с открытым									
	ключом, LR-CPA стойкая									
	криптосистема с открытым ключом									
	и многократное шифрование									
	сообщений, IND-CCA стойкая									
	криптосистема с открытым ключом.									
2	Криптосистема Рабина и её									
۷.	•									
	стойкость в предположении									
	сложности задачи целочисленной									
	факторизации									
3.	Криптосистема RSA: обоснование									
	корректности алгоритма									
	расшифрования, полиномиальная									
	эквивалентность задачи									
	восстановления секретного ключа									
	по открытому и задачи									
	целочисленной факторизации, атака									
	на основе связанных сообщений,									
	эквивалентные секретные ключи,									
	атака на повторное шифрование									
	сообщений, теорема Винера и атака									
	на малый показать расшифрования.									
4.	Задача целочисленной									
	факторизации: ро-метод Полларда,									
	факторизация Ферма и факторные									
_	базы, метод квадратичного решета.									
3.	Криптосистема Эль-Гамаля и её									
	IND-CPA стойкость в									
	предположении сложности									
		l .	l	L	L	l .	1	1	l	

		1	T	I	T	1	1	1
	распознавательной проблемы							
	Диффи-Хеллмана.							
6.	Задача дискретного							
0.	логарифмирования. Основные							
	алгоритмы дискретного							
	логарифмирования: большой шаг –							
	малый шаг, ро-метод Полларда,							
	метод Полига—Хеллмана.							
7.	Криптосистема Меркла—Хеллмана,							
	атака на неё с использованием LLL-							
	алгоритма.							
8.	Криптосистема Мак-Элиса.							
	Классическая криптосистема Мак-							
	Элиса на основе кодов Гоппы. Коды							
	Гоппы, определение, основные							
	параметры, декодирование							
	неприводимых кодов Гоппы,							
	декодирование сепарабельных							
	кодов Гоппы на основе алгоритма							
	Берлекемпа—Месси. Атака на							
	-							
	повторное шифрование одного							
	сообщения. Алгоритм Штерна							
	поиска слов небольшого веса							
	Хемминга в коде, его сложность.							
	Приложение алгоритма Штерна в							
	криптографическом анализе							
	криптосистемы Мак-Элиса.							
9.	Эллиптические кривые: основные							
	понятия. Протокол Диффи—							
		1	1				1	

 Хеллмана на эллиптических кривых. 10. Протоколы электронной-цифровой подписи. Угрозы схемам электронной подписи. 11. Основные протоколы электронной подписи: RSA, протокол Меркла— Лемпорта, протокол Эль-Гамаля на эллиптических кривых. 								
4. Компьютерная безопасность 1. Определение политики безопасности. Дискреционная политика. Политика MLS. Математические методы анализа политики безопасности. Модель «take-grant», модель Белла-Лападула, модель LWM, модель невлияния и автоматный подход 2. Защита компьютерных систем от удаленных атак через сеть Internet. Режим функционирования межсетевых экранов и их основные компоненты; маршрутизаторы; шлюзы сетевого уровня; усиленная аутентификация; основные схемы сетевой защиты на базе межсетевых экранов; применение межсетевых	20	<u>-</u>		_	_	20	-	20

экранов для организации виртуальных корпоративных сетей; программные методы защиты.										
Промежуточная аттестация: допуск к кандидатскому экзамену	3	-	-	-	-	3	3	-	-	-
Итого	108	-	-	-	-	6	6	102	-	102

8. Образовательные технологии.

Проводятся лекции-консультации с использованием мультимедийной техники.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю): Аспирантам предоставляется программа курса, задания для самостоятельной работы, презентации.

10. Ресурсное обеспечение:

- 1. Лидл Л., Нидеррайтер Г. Конечные поля. Том 1 / Л. Лидл, Г. Нидеррайтер, Москва: Мир, 1988. 430 с.
- 2. Лидл Л., Нидеррайтер Г. Конечные поля. Том 2 / Л. Лидл, Г. Нидеррайтер, Москва: Мир, 1988. 430 с.
- 3. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996
 - 4. D. Stinson, Cryptography: Theory and Practice. 4th Edition, CRC Press, 2019.
 - 5. Rainer A.Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986
 - 6. Смарт Н. Криптография / Н. Смарт, Москва: Техносфера, 2005. 528 с.
- 7. Коблиц Н. Курс теории чисел и криптографии / Н. Коблиц, Москва: Научное изд-во ТВП, 2001. 254 с.
- 8. Berson T. A. Failure of the McEliece public-key cryptosystem under message-resend and related-message attack Lecture Notes in Computer Science / под ред. В. S. Kaliski, Berlin, Heidelberg: Springer, 1997.C. 213–220.
- 9. Болотов А. А. [и др.]. Элементарное введение в эллиптическую криптографию: алгебраические и алгоритмические основны / А. А. Болотов, С. Б. Гашков, А. Б. Фролов, А. А. Часовских, Москва: КомКнига, 2006. 328 с.
- 10. Болотов А. А. [и др.]. Элементарное введение в эллиптическую криптографию: протоколы криптографии на эллиптических кривых / А. А. Болотов, С. Б. Гашков, А. Б. Фролов, А. А. Часовских, Москва: КомКнига, 2006. 280 с.
- 11. Goldreich O. Foundations of Cryptography Basic Tools / O. Goldreich, Cambridge University Press, 2004.
- 12. Тилборг ван Х.К.А. Основы криптологии. Профессиональное руководство и интерактивный учебник / Тилборг ван Х.К.А., Москва: Мир, 2006. 471 с.
- 13. Katz J., Lindell Y. Introduction to Modern Cryptography, Second Edition / J. Katz, Y. Lindell, 2nd-е изд., Chapman & Hall/CRC, 2014.

- 14. Грушо А.А., Применко Э.А., Тимонина Е.Е. Теоретические основы компьютерной безопасности. Изд. центр «Академия», 2009.
- 15. Логачев О.А., Сальников А.А., Смышляев С.В., Ященко В.В. Москва: ЛЕНАНД, 2015, 576 страниц.
- 16. Ф. Дж. Мак-Вильямс, Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки / Ф. Дж. Мак-Вильямс, Н. Дж. А. Слоэн, под ред. Л. А. Бассалыго, перевод И. И. Грушко, В. А. Зиновьев, Москва: Связь, 1979. 744 с.
- 17. Stern J. A method for finding codewords of small weight под ред. G. Cohen, J. Wolfmann, Springer Berlin Heidelberg, 1989.C. 106–113.
 - 18. Preneel B. Analysis and Design of Cryptographic Hash Functions, PhD Thesis, 1993, http://www.esat.kuleuven.ac.be/~pretieel/phd_preneel_febl993.pdf
 - 19. Столлингс В. Криптография и защита сетей. Принципы и практика.

Москва, Санкт- Петербург, Киев: Издательский дом «Вильямс», 2-е издание, 2001.

- 20. Berlekamp E., McEliece R. J., Tilborg H. C. van On the Inherent Intractability of Certain Coding Problems // Information Theory, IEEE Transactions on. 1978. No 3 (24). C. 384–386.
- 21. Repka M., Zajac P. Overview of the Mceliece Cryptosystem and its Security // Tatra Mountains Mathematical Publications. 2014. No 1 (60). C. 57–83.
- 22. Черепнёв, М. А. Криптографические протоколы: учебное пособие, Москва: МАКС Пресс, 2018, 125 с.

Дополнительная литература:

- 1. N. Koblitz: Algebraic Aspects of Cryptography, Vol.3, Algorithms and Computation in Mathematics, Springer-Verlag, 1998.
- 2. W. Patterson, Mathematical Cryptology for Computer Scientists and Mathematicians Rowman and Littlefield Publishers, 1987
 - 3. Применко Э.А. Алгебраические основы криптографии. М: Либроком, 2013, 288 с
- 4. M.Grötschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd edition, Springer-Verlag, 1993.
 - 5. J. Buchmann, Introduction to Cryptography, Springer-Verlag, New York, 2000.
- 6. Василенко О. Н. Теоретико-числовые алгоритмы в криптографии / О. Н. Василенко. Москва : МЦНМО, 2014, 334 с.

- 7. Введение в теоретико-числовые методы криптографии: учебное пособие для студентов высших учебных заведений, обучающихся по специальности 090101 "Криптография" / М. М. Глухов, И. А. Круглов, А. В. Пичкур, А. В. Черемушкин. Санкт-Петербург; Москва: Лань, 2011. 394 с.
- 8. Основы криптографии: учебное пособие для студентов вузов, обучающихся по группе специальностей в обл. информ. безопасности / А. П. Алферов, А. Ю. Зубов, А. С. Кузьмин, А. В. Черемушкин. Москва: Гелиос АРВ, 2001. 478 с.
- 9. Аверченков В. И. Криптографические методы защиты информации: учебное пособие. 2-е издание, стереотипное. Москва: «ФЛИНТА», 2017. 214 с.

11. Язык преподавания – русский

12. Авторы программы:

Доцент кафедры информационной безопасности, к.ф.-м.н. Чижов Иван Владимирович,

Фонды оценочных средств, необходимые для оценки результатов обучения

Допуск к сдаче кандидатского экзамена получают аспиранты, сдавшие свыше 65% тестовых контрольных работ.

Тестовые контрольные работы, основываются на вопросах кандидатского минимума по соответствующей специальности.