Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Вычислительной математики и кибернетики факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Теория вероятностей и математическая статистика» «Probability Theory and Mathematical Statistics»

Программа (программы) подготовки научных и научно-педагогических кадров в аспирантуре Теория вероятностей и математическая статистика (102-01-00-114-фмн)

Рабочая программа дисциплины разработана в соответствии с Приказом Ректора МГУ №1216 от 24 ноября 2021 года «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых Московским государственным университетом имени М.В. Ломоносова»

1. Краткая аннотация:

Программа направлена на подготовку аспирантов к сдаче кандидатского экзамена по специальности «Теория вероятностей и математическая статистика», в том числе на изучение основных аспектов теории вероятностей и математической статистики, в особенности задач, предполагающих применение аппарата теории вероятностей при исследовании реальных явлений и процессов, протекающих в условиях стохастической неопределенности, а также на подготовку к сдаче экзамена.

Особенностью данной программы является сбалансированное изучение классических, фундаментальных методов теории вероятностей и математической статистики с формированием умения практического применения современных интеллектуальных методов анализа данных при решении широкого круга естественно-научных проблем

- 2. Уровень высшего образования—подготовка кадров высшей квалификации.
- 3. Научная специальность: 1.1.4. «Теория вероятностей и математическая статистика»
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры: Дисциплины (модули), направленные на подготовку к кандидатским экзаменам.
- 5. Объем дисциплины (модуля) в зачетных единицах составляет 108 часов, из которых 6 часов составляет контактная работа аспиранта с преподавателем, 102 часа составляет самостоятельная работа.
- 6. Входные требования для освоения дисциплины (модуля), предварительные условия: в специалитете на предыдущих уровнях высшего образования должны быть освоены общие курсы, соответствующие предыдущему уровню образования по специальностям программы.

7. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)		В том числе										
	Всего (часы)]	Контактн	ая рабо преп	Самостоятельная работа обучающегося, часы из них							
		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выполнение домашних заданий	Подготовка к коллоквиумам	Всего		
1. Вероятностные меры	20							20		20		
 Алгебры и сигма-алгебры. Конечные и бесконечные измеримые пространства. Теорема Каратеодори о продолжении Примеры наиболее важных для теории вероятностей измеримых												

		1					
испытаний. Гауссовские							
последовательности.							
4. Вероятностное пространство. Аксиоматика Колмогорова.							
Аксиоматика колмогорова. 5. Измеримые функции. Равномерная							
сходимость, сходимость почти							
всюду и сходимость по мере.							
6. Определение интеграла Лебега и его							
связь с интегралом Лебега-							
Стилтьеса в R^1 .							
7. Мера, определяемая с помощью							
интеграла Лебега. Производная							
Радона- Никодима.							
8. Произведения мер. Теорема							
Фубини.							
9. Пространства L ₁ и L ₂ и их							
характеристики.							
10.Сходимость в среднем.							
Ортогональность или							
некоррелированность случайных							
величин. Проекция случайной							
величины на подпространство,							
порожденное другими случайными							
величинами.							
11. Независимость событий и сигма-							
алгебр. Условные вероятности и							
условные математические							
ожидания.							
2. Предельные теоремы теории	21			1	1	20	20
вероятностей							
1.0							
1. Определение и основные свойства							
функции распределения и							

характеристической функции случайных величин. Формулы обращения, равенство Парсеваля. Теорема непрерывности. 2. Центральная предельная теорема. Теорема Берри-Эссеена. 3. Безгранично делимые и устойчивые распределения. Теорема Леви. Теорема Хинчина. Представление Леви-Хинчина логарифма характеристической функции безгранично делимого закона. 4. Закон нуля или единицы. 5. Усиленный закон больших чисел. 6. Закон повторного логарифма. 7. Стационарность, эргодичность теорема Биркгофа-Хинчина.							
3. Случайные процессы. Распределения в функциональных пространствах	21			1	1	20	20
 Слабая сходимость, относительная компактность и плотность семейств вероятностных мер. Непрерывность и дифференцируемость случайной функции. Процессы с независимыми приращениями. Пуассоновский процесс. Винеровскийпроцесс и свойства его траекторий. Стохастический интеграл от неслучайной функции и его основные свойства. Спектральное представление стационарного в 							

 широком смысле процесса и его корелляционной функции. Теорема Бохнера-Хинчина. 5. Линейные преобразования стационарных процессов, интегрирование и дифференцирование. Линейное прогнозирование. Гауссовские процессы. 6. Мартингалы и полумартингалы. Тождество Вальда. 7. Теоремы о сходимости мартингалов. 8. Цепи Маркова, классификация состояний, условия эргодичности. 							
 Стохастическое исчисление и диффузионные процессы Стохастический интеграл. Формула Ито. Существование и единственность решений стохастических дифференциальных уравнений. Исследование распределений функционалов от диффузионных процессов с помощью дифференциальных уравнений. 	20					20	20
5. Элементы математической статистики 1.Основные понятия математической статистики. Статистическая структура.	23			1	1	22	22

Выборка. Порядковые статистики. Эмпирическая функция распределения. Теорема Гливенко. 2.Достаточные статистики и сигмаалгебры. Критерий факторизации. 3.Полнота семейств распределений. Экспоненциальные семейства. 4.Теорема Рао - Блекуэлла-Колмогорова. Использование для построения наилучшей несмещенной оценки 5.Несмещенность. Несмещенные оценки с минимальной дисперсией. Неравенство Рао-Крамера. 6.Метод максимального правдоподобия. Асимптотические свойства оценок максимального правдоподобия. Простая гипотеза. Критерий для проверки простых гипотез. Ошибки 1-го и 2-го родов. Мощность критерия. Лемма Неймана-Пирсона.							
Промежуточная аттестация: допуск к кандидатскому экзамену	3			3	3		
Итого	108			6	6	102	102

8. Образовательные технологии.

Проводятся лекции-консультации с использованием мультимедийной техники.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Аспирантам предоставляется программа курса, задания для самостоятельной работы, презентации.

10. Ресурсное обеспечение:

Основная литература:

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.:ФИЗМАТЛИТ, 2004 г.
- 2. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1 М.:Мир, 1984 г.
- 3. Феллер В. Введение в теорию вероятностей и ее приложения. Т.2 М.:Мир, 1984 г.
- 4. Боровков А.А. Математическая статистика. М.:УРСС, 2010.
- 5. Вентцель А.Д. Курс теории случайных процессов. М.:ФИЗМАТЛИТ, 1996 г.
- 6. Ширяев А.Н. Вероятность. (в двух книгах) М.:МЦНМО, 2007 г.
- 7. Боровков А.А. Теория вероятностей. М.:УРСС, 2009 г.
- 8. Гихман И.И. Скороход А.В. Введение в теорию случайных процессов М.Наука, 1977 г.
- 9. Лукач Е. Характеристические функции. М.: Наука, 1979.
- 10. Колмогоров А.Н. Предельные распределения для сумм независимых случайных величин. 1949 г.
- 11. Леман Э. Теория точечного оценивания. М.: Наука, 1991.
- 12. Леман Э. Проверка статистических гипотез. М.: Наука, 1979.

Дополнительная литература:

- 1. Энциклопедия «Вероятность и математическая статистика». Под ред. Ю. В. Прохорова. М. Российская Энциклопедия, 1999.
- 2. Прохоров Ю.В., Розанов Ю. А. Теория вероятностей. М.: Наука, 1987 г.
- 11. Язык преподавания русский
- 12. Авторы программы:
- д. ф.-м. н., профессор Королев Виктор Юрьевич
- д. ф.-м. н., профессор Шестаков Олег Владимирович

Фонды оценочных средств, необходимые для оценки результатов обучения Методические материалы для проведения процедур оценивания результатов обучения

Допуск к сдаче кандидатского экзамена получают аспиранты, сдавшие свыше 65% тестовых контрольных работ.

Тестовые контрольные работы, основываются на вопросах кандидатского минимума по соответствующей специальности.