Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

УТВЕРЖДАЮ

декан факультета вычислительной математики и кибернетики факультет вычислительной математики и кибернетики и кибе

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины (модуля):

Модели дискретной оптимизации

Уровень высшего образования:

магистратура

Направление подготовки / специальность: 01.04.02 "Прикладная математика и информатика" (3++)

Направленность (профиль) ОПОП: Искусственный интеллект в кибербезопасности

Форма обучения:

очная

Рабочая программа рассмотрена и утверждена на заседании Ученого совета факультета ВМК (протокол № 4/2, от 29 сентября 2021 года)

Москва 2021

Рабочая программа дисциплины (модуля) разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 01.04.02 "Прикладная математика и информатика" утвержденного Приказом Министерства образования и науки РФ от 10 января 2018 г. N 13.

1. Место дисциплины (модуля) в структуре ОПОП ВО:

Дисциплина (модуль) относится к части дисциплин основной профессиональной образовательной программы, формируемых участниками образовательных отношений.

2. Входные требования для освоения дисциплины (модуля), предварительные условия:

Учащиеся должны владеть знаниями по математическому анализу, линейной алгебре, теории оптимизации, дифференциальным уравнениям в объеме, соответствующем основным образовательным программам бакалавриата по укрупненным группам направлений и специальностей 01.00.00 «Математика и механика», 02.00.00 «Компьютерные и информационные науки».

3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Планируемые результаты обучения по дисциплине (модулю)									
Содержание и код компе-	Индикатор (показатель) достижения компетен-	Планируемые результаты обучения по							
тенции.	ции	дисциплине, сопряженные с индикаторами							
		достижения компетенций							
ПК-1. Способен исследо-	ПК-1.1. Исследует и разрабатывает архитектуры си-	ПК-1.1. 3-1. Знает архитектурные принципы построения							
вать и разрабатывать архи-	стем искусственного интеллекта для различных	систем искусственного интеллекта, методы декомпозиции							
тектуры систем искус-	предметных областей	основных подсистем (компонентов) и реализации их вза-							
ственного интеллекта для	ПК-1.2. Выбирает комплексы методов и инструмен-	имодействия на основе методологии предметно-							
различных предметных об-	тальных средств искусственного интеллекта для ре-	ориентированного проектирования							
ластей на основе комплек-	шения задач в зависимости от особенностей пред-	ПК-1.1. У-1. Умеет выстраивать архитектуру системы ис-							
сов методов и инструмен-	метной области	кусственного интеллекта, осуществлять декомпозицию							
тальных средств систем		основных подсистем (компонентов) и реализации их вза-							
искусственного интеллекта		имодействия на основе методологии предметно-							
		ориентированного проектирования							
		ПК-1.2. 3-1. Знает методы и инструментальные средства							
		систем искусственного интеллекта, критерии их выбора и							
		методы комплексирования в рамках создания интегриро-							
		ванных гибридных интеллектуальных систем различного							
		назначения							
		ПК-1.2. У-1. Умеет выбирать, применять и интегрировать							
		методы и инструментальные средства систем искусствен-							
		ного интеллекта, критерии их выбора и методы комплек-							
		сирования в рамках создания интегрированных гибридных							

	интеллектуальных систем различного назначения

- **4.** Объем дисциплины (модуля) составляет 3 з.е., в том числе 72 академических часа, отведенных на контактную работу обучающихся с преподавателем, 36 академических часов на самостоятельную работу обучающихся.
- 5. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий:

Курс состоит из трех частей. Первая часть посвящена вопросам постановки, а также алгоритмической сложности решения задач дискретной оптимизации. Рассматриваются базовые понятия теории сложности, основанные на формализме машин Тьюринга, основные классы сложности (P, NP). Объясняется понятия полиномиальной сводимости и NP-полной задачи, доказывается теорема Кука. Далее рассматриваются примеры NP-полных задача о 3-выполнимости, задача о трехмерном сочетании, задача о сумме подмножеств в форме распознавания.

Во второй части курса обсуждаются основы Булева программирования на примере задачи о ранце. Рассматривается классические постановки задачи о ранце и ее частный случай — задача о сумме подмножеств. На примере этой задачи рассматриваются основные точные и приближенные подходы к решению задач дискретной оптимизации: «жадные» алгоритмы, методы ветвей и границ, верхние и нижние оценки. Существенное внимание уделяется различным вариантам методов динамического программирования.

В третьей части рассматривается общая постановка линейной целочисленной задачи и методы ее решения. Даются базовые концепции линейной оптимизации: многогранники, грани, вершины, свойства многогранников. Формы задания задачи линейного программирования. Изучаются прямой и двойственный варианты симплекс-метода. Понятие отсечения и метод Гомори.

Наименование и крат-	Всего	В том числе								
кое содержание разделов и тем дисциплины, форма промежуточной аттестации по дисци-	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа учащего- ся, часы из них		
плине		Занятия лек- ционного типа	Занятия се- минарского типа	Групповые консультации	Индивиду- альные кон-	Учебные занятия, направленные на проведение теку- щего контроля успеваемости: коллоквиумы,	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п	Всего

				практические контрольные занятия и др.			
Тема 1. Введение в дискретную оптимизацию. Классификация задач оптимизации и методов их решения. Точные и приближенные методы. Примеры задач. Применение на практике.	6	2			2	4	4
Тема 2. Основы теории сложности Языки. Машина Тьюринга. Детерминированная машина Тьюринга. Недетерминированная машина Тьюринга. Понятие классов Р и NP. Полиномиальная сводимость и NP-полные задачи. Теорема Кука. Примеры NP-полных задача. Задача о 3-выполнимости. Задача о трехмерном сочетании. Задача о сумме подмножеств в форме распознавания. NP-полнота в сильном	22	10			10	12	12

смысле.							
Тема 3. Основы Булева программирования Постановка и базовые свойства задач Булева программирования. Задача о сумме подмножеств и задача о ранце. Задача о сумме подмножеств. «Жадные» алгоритмы. Методы ветвей и границ. Верхние и нижние оценки. Методы динамического программирования. Табличный и списковые варианты, концепция доминирования. Концепция ядра и баланисировки в динамическом программировании. Сложность методов решения задач ранцевого типа различными методами. Сокращения сложности за счет гибридизации алгоритмов.	22	10		0	10	12	12
Тема 4. Линейная целочисленная оптимизация Основные понятия линейного программирова-	20	8		0	8	12	12

ния. Многогранники, грани, вершины, свойства многогранников. Формы задания задачи линейного программирования. Прямой и двойственный симплекс-методы. Постановка задачи целочисленного линейного программирования. Понятие отсечения. Метод Гомори.									
Промежуточная атте- стация – экзамен	38	-	-	2	-	2	36	-	36
Итого	108				•	36			72

- 6. Фонд оценочных средств (ФОС, оценочные и методические материалы) для оценивания результатов обучения по дисциплине (модулю).
- 6.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости, критерии и шкалы оценивания

Примерные вопросы контрольного задания для текущего контроля успеваемости.

- 1. Решить задачу оптимизации методом деформируемого многогранника.
- 2. Решить задачу оптимизации методом конфигураций.
- 3. Решить задачу оптимизации методом сопряженных направлений.
- 4. Решить задачу оптимизации методом конфигураций.
- 5. Решить задачу оптимизации методом деформируемого многогранника.
- 6. Решить задачу оптимизации методом сопряженных направлений.
- 7. Решить задачу оптимизации методом конфигураций.

- 8. Решить задачу оптимизации методом деформируемого многогранника.
- 9. Решить задачу оптимизации методом сопряженных направлений
- 6.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации по дисциплине, критерии и шкалы оценивания

Список вопросов

- 1) Классификация задач оптимизации по числу критериев, локальности экстремума, структуре допустимого множества. Классификация методов оптимизации: детерминированные и эвристические методы решения задач оптимизации.
- 2) Понятия алфавита, языка и машины Тьюринга. Примеры машин Тьюринга.
- 3) Недетерминированная машина Тьюринга, классы сложности Р и NP. Проблема равенства классов. Примеры задач.
- 4) Полиномиальная сводимость, теорема Кука. Понятие NP-полной задачи.
- 5) NP-полнота задачи о 3-выполнимости. Преобразование произвольной КНФ к 3-КНФ.
- 6) NP-полнота задачи о трехмерном сочетании.
- 7) NP-полнота задачи о сумме подмножеств в форме распознавания.
- 8) NP-полнота в сильном смысле.
- 9) Задача о ранце, задача о сумме подмножеств: формулировка, основные понятия, экономическая интерпретация. Линейная релаксация.
- 10) Метод ветвей и границ в задаче о ранце, понятия подзадачи, верхней и нижней оценок. Общая схема алгоритма. Алгоритмическая сложность метода ветвей и границ, пример Финкельштейна.
- 11) Понижение показателя степени в верхней оценке числа итераций МВГ за счет предварительной сортировки и рекурсии.
- 12) Принцип оптимальности Беллмана, табличный вариант метода динамического программирования для задачи о сумме подмножеств в форме распознавания.
- 13) Табличный вариант метода динамического программирования для задачи о ранце.
- 14) Метод динамического программирования со списками для задачи о ранце.
- 15) Концепция ядра и понятие балансировки в методе динамического программирования. Сбалансированные наборы, сбалансированные операции.
- 16) Алгоритм BALSUB для задачи о сумме подмножеств.
- 17) Оценки сложности и сравнение различных вариантов метода динамического программирования для задачи о сумме подмножеств.
- 18) Понятия многогранника, грани, вершины, связь с задачами линейного программирования. Формы задания задачи линейного программирования.
- 19) Понятие базового допустимого и недопустимого решений задачи ЛП, геометрическая интерпретация.
- 20) Прямой симплекс-метод, получение начального решения.
- 21) Двойственный симплекс-метод.
- 22) Постановка задачи линейного целочисленного программирования. Понятие отсечения. Метод Гомори.

Примерное контрольное задание для промежуточной аттестации.

ПКЗ ПА.

- 1. Решить задачу о ранце табличным методом динамического программирования.
- 2. Решить задачу о ранце методом ветвей и границ.
- 3. Написать программу для детерминированной машины Тьюринга, которая прибавляет единицу к двоичному (десятичному, троичному и т.п.) целому числу на ленте.
- 4. На ленте машины Тьюринга содержится двоичная последовательность. Напишите программу для машины Тьюринга, которая вычисляет двоичное дополнение записанного числа, т.е. заменяет каждый символ 1 на 0 и наоборот.
- 5. Свести КНФ к 3-КНФ, записать последовательность преобразований.

Методические материалы для проведения процедур оценивания результатов обучения

Текущий контроль успеваемости осуществляется в виде двух контрольных работ, содержащих по 5 заданий. Выполнение 4-х и более заданий в одной контрольной работе добавляет 1 балл к оценке задания промежуточной аттестации. Промежуточная аттестация содержит 10 заданий. Выполнение 9 или 10 заданий соответствует оценке "отлично", 7 или 8 — оценке "хорошо", 5 или 6 — оценке "удовлетворительно", менее 5 — оценке "неудовлетворительно".

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)									
Оценка	2	3	4	5					
РО и	(не зачтено)	(зачтено)	(зачтено)	(зачтено)					
соответствующие ви-									
ды оценочных средств									
Знания	Отсутствие знаний	Фрагментарные знания	Общие, но не структуриро-	Сформированные систе-					
Экзамен			ванные знания	матические знания					
Умения	Отсутствие умений	В целом успешное, но не си-	В целом успешное, но со-	Успешное и системати-					
Практические зада-		стематическое умение	держащее отдельные пробе-	ческое умение					
ния			лы умение (допускает не-						
			точности непринципиально-						
			го характера)						

Навыки	Отсутствие навыков	Наличие отдельных навыков	В целом, сформированные	Сформированные навыки
(владения, опыт дея-	(владений, опыта)	(наличие фрагментарного	навыки (владения), но ис-	(владения), применяемые
тельности)		опыта)	пользуемые не в активной	при решении задач
Экзамен, практиче-			форме	
ские занятия				

7. Ресурсное обеспечение:

7.1. Перечень основной и дополнительной литературы

Основная литература

1) Корте Б. Комбинаторная оптимизация. Теория и алгоритмы. Москва:МЦНМО, 2015 г.

Дополнительная литература

- 1) Сигал И. Х., Иванова А. П. Введение в прикладное дискретное программирование //М.: физматлит. 2003.
- 2) Korte B. et al. Combinatorial optimization. Heidelberg: Springer, 2012. T. 2.
- 3) Данциг Д. Линейное программирование, его обобщения и применения //М.: Прогресс. 1966.
- 4) Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. 1984..
- 5) Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи //Мир. 1982.Самуэльсон П. Экономикс. М.: Прогресс, 1994
- 7.2. Перечень лицензионного программного обеспечения, в том числе отечественного производства

При реализации дисциплины может быть использовано следующее программное обеспечение:

Программное обеспечение для подготовки слайдов лекций MS PowerPoint, MS Word

Программное обеспечение для создания и просмотра pdf-документов Adobe Reader

Издательская система LaTeX

Язык программирования Python и среда разработки Jupiter Notebook (вместе с библиотеками numpy, scikit-learn, pandas)

Язык программирования R и среда разработки R Studio

Среда разработки MATLAB.

7.3. Перечень профессиональных баз данных и информационных справочных систем

- 1. http://www.edu.ru портал Министерства образования и науки РФ
- 2. http://www.ict.edu.ru система федеральных образовательных порталов «ИКТ в образовании»
- 3. http://www.openet.ru Российский портал открытого образования
- 4. http://www.mon.gov.ru Министерство образования и науки Российской Федерации
- 5. http://www.fasi.gov.ru Федеральное агентство по науке и инновациям
- 7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»
 - 1. Math-Net.Ru [Электронный ресурс] : общероссийский математический портал / Математический институт им. В. А. Стеклова РАН ; Российская академия наук, Отделение математических наук. М. : [б. и.], 2010. Загл. с титул. экрана. Б. ц.

URL: http://www.mathnet.ru

- 2. Университетская библиотека Online [Электронный ресурс] : электронная библиотечная система / 000 "Директ-Медиа" . М. : [б. и.], 2001.
- Загл. с титул. экрана. Б. ц. URL: www.biblioclub.ru
- 3. Универсальные базы данных East View [Электронный ресурс]: информационный ресурс / East View Information Services. М.: [б. и.], 2012.
- Загл. с титул. экрана. Б. ц.

URL: www.ebiblioteka.ru

4. Научная электронная библиотека eLIBRARY.RU [Электронный ресурс] : информационный портал / 000 "РУНЭБ" ; Санкт-Петербургский государственный университет. - М. : [б. и.], 2005. - Загл. с титул. экрана. - Б. ц.

URL: www.eLibrary.ru

7.5. Описание материально-технического обеспечения.

Факультет ВМК, ответственный за реализацию данной Программы, располагает соответствующей материально-технической базой, включая современную вычислительную технику, объединенную в локальную вычислительную сеть, имеющую выход в Интернет. Используются специализированные компьютерные классы, оснащенные современным оборудованием. Материальная база факультета соответствует действующим санитарно-техническим нормам и обеспечивает проведение всех видов занятий (лабораторной, практической, дисциплинарной и междисциплинарной подготовки) и научно-исследовательской работы обучающихся, предусмотренных учебным планом.

- 8. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.
- 9. Разработчик (разработчики) программы.

д.ф.- м.н., доцент Посыпкин Михаил Анатольевич (mposypkin@gmail.com)

10. Язык преподавания - русский.