Раздел II. Обратные задачи

С.И. Соловьева

О ЧИСЛЕННОМ РЕШЕНИИ ОБРАТНОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ДИФФУЗИИ В СЛУЧАЕ СФЕРИЧЕСКОЙ СИММЕТРИИ^{*}

При исследовании математических моделей процессов возбуждения сердца возникают обратные задачи для эволюционных дифференциальных уравнений, см., например, [1-4]. В ряде случаев исходной информацией для решения подобных обратных задач является потенциал внешнего поля, определяемый решением эволюционного дифференциального уравнения [5,6].

В данной работе рассматривается начально-краевая задача для уравнения диффузии в случае сферической симметрии с неизвестным начальным условием. Дополнительной информацией, используемой для определения неизвестного начального условия, является внешний объемный потенциал, плотность которого представляет собой оператор Лапласа, вычисленный на решении начально-краевой задачи. Эту задачу можно рассматривать как линеаризованную постановку обратной задачи для математической модели возбуждения сердца.

Рассмотрим начально-краевую задачу для уравнения диффузии в случае сферической симметрии

$$\frac{\partial u}{\partial t} = \frac{D^2}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) - qu, \quad a < r < b, \quad 0 < t \le T$$
 (1)

$$\alpha_1 u(a,t) - \beta_1 \frac{\partial u}{\partial r}(a,t) = 0, \ 0 \le t \le T,$$
 (2)

$$\alpha_2 u(b,t) + \beta_2 \frac{\partial u}{\partial r}(b,t) = 0, \quad 0 \le t \le T, \tag{3}$$

$$u(r,0) = \gamma(r), \quad 0 \le t \le T. \tag{4}$$

Сформулируем обратную задачу. Пусть постоянные D^2 , q, α_i , β_i , i=1,2 заданы, а функция $\gamma(r)$ неизвестна. Требуется определить $\gamma(r)$ и u(r,t) для $r\in [a,b], t\in [0,T]$, если для $t\in [t_1,t_2]\subseteq [0,T]$ задана функция

77

^{*} Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (код проекта 14-01-00244а)

$$g_0(t) = \frac{4\pi}{R_0} \int_a^b \frac{\partial}{\partial r} \left(r^2 \frac{\partial u(r, t)}{\partial r} \right) dr, \tag{5}$$

где R_0 – постоянная, $R_0 > b$.

Функция $g_0(t)$ является значениями внешнего объемного потенциала на сфере радиуса R_0 . Его плотность представляет собой оператор Лапласа, вычисленный на решении начально-краевой задачи (1) – (4).

В работах [7,8] был исследован вопрос единственности решения данной задачи при различных значениях $a,b,\alpha_i,\beta_i,\ i=1,2.$ Были установлены условия на значения этих параметров, при которых решение обратной задачи единственно и показано, что при их нарушении её решение не единственно.

В этой работе рассматривается численный метод решения обратной задачи, в предположении о том, что условие единственности ее решения выполнены.

Построение численного метода

Решение задачи (1) – (4) может быть получено методом разделения переменных. Будем искать его в виде $u(r,t)=\frac{v(r,t)}{r}$. Тогда функция v(r,t) является решением задачи

$$v_t = D^2 v_{rr} - qv, \quad a < r < b, \quad 0 < t \le T,$$
 (6)

$$(\alpha_1 a + \beta_1) v(a, t) - \beta_1 a v_r(a, t) = 0, \ 0 \le t \le T, \tag{7}$$

$$(\alpha_2 b - \beta_2) v(b, t) + \beta_2 b v_r(b, t) = 0, \quad 0 \le t \le T,$$

$$v(r, 0) = r \gamma(r), \quad 0 \le t \le T.$$
(8)

Решив задачу (6) – (8) методом разделения переменных получим

$$v(r,t) = \sum_{n=1}^{\infty} \gamma_n y_n(r) e^{-D^2 \lambda_n t}, \qquad (9)$$

где

$$\gamma_n = \frac{1}{\|y_n\|_{L_2[a,b]}^2} \int_a^b r \cdot \gamma(r) y_n(r) dr,$$
 (10)

 λ_n — собственные значения, а $y_n(r)$ — собственные функции задачи Штурма-Лиувилля

$$y'' + \left(\lambda_n - \frac{q}{D^2}\right)y = 0, \qquad a < r < b,$$

$$(\alpha_1 a + \beta_1)y(a) - \beta_1 ay'(a) = 0,$$

$$(\alpha_2 b - \beta_2)y(b) + \beta_2 by'(b) = 0.$$

Обозначим $\mu_n^2 = \lambda_n - \frac{q}{D^2}$. Тогда

$$y_n(r) = (\alpha_1 a + \beta_1) \sin \mu_n(r - a) + \beta_1 a \mu_n \cos \mu_n(r - a),$$

а μ_n определяются из уравнения

$$(\alpha_2 b - \beta_2)(\beta_1 a \mu_n \cos \mu_n (r - a) + (\alpha_1 a + \beta_1) \sin \mu_n (r - a)) + + \beta_2 b(-\beta_1 a \mu_n^2 \sin \mu_n (r - a) + \mu_n (\alpha_1 a + \beta_1) \cos \mu_n (r - a)) = 0.$$

Учитывая формулы (9), (10), выпишем формулу для решения задачи (1) – (4) u(x,t):

$$u(r,t) = \frac{1}{r} \int_{a}^{b} s \gamma(s) \left[\sum_{n=1}^{\infty} \frac{1}{\|y_n\|^2} y_n(s) y_n(r) e^{-D^2 \lambda_n t} \right] ds.$$

Подставив данное выражение в (5) получим интегральное уравнение Фредгольма I рода для определения неизвестной функции $\gamma(s)$:

$$\int_{a}^{b} L(t,s) \cdot \gamma(s) ds = g_0(t), \tag{11}$$

где

$$L(t,s) = -\frac{4\pi}{R_0} s \sum_{n=1}^{\infty} \frac{1}{\|y_n\|^2} y_n(s) e^{-D^2 \lambda_n t} \int_a^b r y_n(r) dr.$$

Применим для его решения метод регуляризации Тихонова [9].

Интегральный оператор, стоящий в левой части (11) будем рассматривать действующим из $L_2[a,b]$ в $L_2[t_1,t_2]$.

Пусть для точных значений $g_0(t)$ существует точное решение уравнения (11) $\gamma_0(s)$, но функция $g_0(t)$ неизвестна, а задано ее приближение $g_\delta(t)$, такое что, $\|g_0(t)-g_\delta(t)\|_{L_2[t_1,t_2]} \leq \delta$. Требуется, зная $g_\delta(t)$ и величину погрешности δ построить приближенное решение $\gamma_\delta(s)$.

Рассмотрим функционал

$$M^{\alpha}[\gamma] = \|A\gamma - g_{\delta}\|_{L_{2}[t_{1},t_{2}]}^{2} + \alpha \|\gamma\|_{L_{2}[a,b]}^{2}, \tag{12}$$

где

$$A\gamma = \int_a^b L(t,s) \cdot \gamma(s) ds.$$

Приближенное решение γ_{α} определяется как элемент, реализующий минимум функционала $M^{\alpha}[\gamma]$, в котором параметр регуляризации $\alpha>0$ зависит от величины погрешности δ . Приближенное решение γ_{α} может быть найдено из уравнения Эйлера:

$$\alpha \gamma + A^* A \gamma = A^* g_{\delta}$$
,

представляющего собой необходимое условие минимума функционала (12).

Для приближенного решения уравнения (11) уравнение Эйлера имеет вид

$$\alpha \gamma_{\alpha}(r) + \int_{a}^{b} \gamma_{\alpha}(s) \int_{t_{1}}^{t_{2}} L(t,r)L(t,s)dtds = \int_{t_{1}}^{t_{2}} g_{\delta}(t)L(t,r)dt.$$
 (13)

Параметр регуляризации α выбирался по методу невязки

$$||A \gamma_{\alpha} - g_{\delta}||_{L_{2}[t_{1},t_{2}]}^{2} = \delta^{2}$$

и в результате получалось приближенное решение $\gamma_{\alpha(\delta)}(r)$.

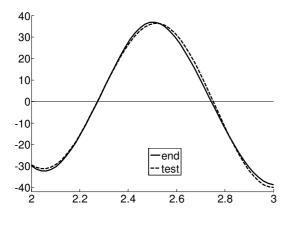
Схема вычислительного эксперимента обратной задачи состояла в следующем:

Для известных значений коэффициентов α_i , β_i , i=1,2 и функции $\gamma(r)$ решалась задача (1)-(4) и определялась

$$g_0(t) = \frac{4\pi}{R_0} \int_a^b \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) dr.$$

Затем функция $g_0(t)$ возмущалась и получалась приближенная функция $g_\delta(t)$ такая, что $\|g_0(t)-g_\delta(t)\|_{L_2[t_1,t_2]} \le \delta$, δ – величина погрешности. Функция $g_\delta(t)$ использовалась в качестве исходной информации для решения уравнения (13).

На рис. 1-4 представлены некоторые результаты приближенного решения обратной задачи с параметрами $D^2=0.1$, $\alpha_1=0.25$, $\beta_1=0.5$, $\alpha_2=1$, $\beta_2=0.5$, q=1, a=2, b=3, T=1, для которых выполнены условия единственности решения обратной задачи (1)-(5). Величина погрешности $\delta=0.01$. Пунктирной линией изображено точное решение $\gamma(r)$, а сплошной линией – приближенное решение $\gamma_{\alpha}(r)$.



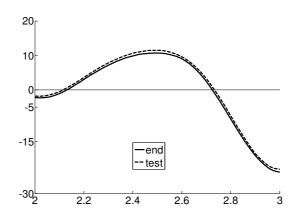
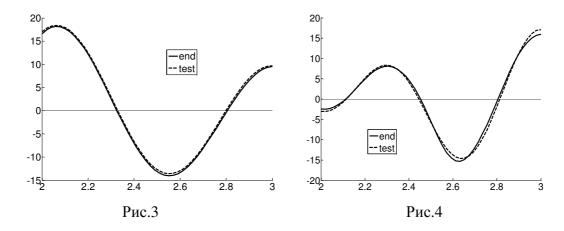


Рис. 1

Рис.2



Данные результаты вычислительных экспериментов свидетельствуют об эффективности применения метода регуляризации Тихонова для решения рассматриваемой обратной задачи.

Литература:

- 1. Sundnes J., Lines G.T., Cai X. et al. Computing the Electrical Activity in the Heart. Berlin and Heidelberg and New York: Springer, 2006, P.311.
- 2. He Y., Keyes D.E. Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements // J. Comput. Neurosci. 2007. Vol. 23. № 2. P.251-264.
- 3. Cox S.J., Wagner A. Lateral overdetermination of the FitzHugh-Nagumo system // Inverse Problems. 2004. № 20. P. 1639-1647.
- 4. Pavel'chak I.A., Tuikina S.R. Numerical solution metod for the inverse problem of the modified FitzHugh-Nagumo model // Computational Mathematics and Modelling. 2012. Vol. 23. № 2. P.208-215.
- 5. Denisov A.M., Kalinin V.V. The inverse problem for mathematical models of heart exitation // Computational Mathematics and Mathematical Physics. 2010. Vol. 50, № 3, p. 515-518.
- 6. Denisov A.M., Pavel'chak I.A. A numerical method for determining a localized initial excitation for some mathematical models of the heart excitation // Mathematical Models and Computer Simulations, Vol. 5, № 1, c. 75-80.
- 7. Denisov A.M. Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential // Computational Mathematics and Mathematical Physics. 2011. Vol. 51. № 9. p. 1588-1595.
- 8. Denisov A.M., Solov'eva S.I. Inverse Problem for the Diffusion Equation in the Case of Spherical Symmetry // Computational Mathematics and Mathematical Physics, 2013. Vol. 53. № 11. p. 1607-1613.
- 9. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. Москва: Наука, 1974. С. 288.