С.И. Соловьева, С.Р. Туйкина

МЕТОД ЧИСЛЕННОГО РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ВОЗБУЖДЕНИЯ СЕРДЦА^{*}

Введение

В настоящее время в кардиологии широкое распространение получили методы математического моделирования, которые позволяют применять современные компьютерные технологии для исследования электрофизиологии сердца, см., например, [1]. Важное значение при этом имеет разработка методов решения обратных задач, ориентированных на совершенствование диагностики кардиологических заболеваний [6]-[14].

При математическом моделировании электрофизиологии сердца широко используются математические модели Фитц-Хью–Нагумо, Алиева -Панфилова, бидоменная модель, описывающие процесс возбуждения сердца в терминах трансмембранного потенциала и представляющие собой начально-краевые задачи для системы эволюционных квазилинейных уравнений в частных производных [1-5]. При разработке неинвазивных способов диагностики заболеваний сердца возникает необходимость решать обратные задачи определения параметров этих математических моделей. Численные методы решения некоторых обратных задач для моделей возбуждения сердца были предложены в работах [1, 6, 10–13].

В данной работе для модифицированной математической модели Фитц-Хью-Нагумо рассматривается задача определения области сердца, пораженной инфарктом миокарда. Эта обратная задача состоит в определении зависящего от пространственных переменных коэффициента системы уравнений в частных производных. Задача решается в двумерной области, представляющей собой сечение сердца и его желудочков горизонтальной плоскостью. Дополнительная информация, используемая при решении обратной задачи, соответствует измерениям, проводимым катетерами внутри одного из желудочков.

В работе предлагается численный метод решения этой обратной задачи и приводятся результаты вычислительных экспериментов, позволяющие оценить эффективность предложенного метода. В отличие от публикаций [1,11,12] в данной работе математическая модель содержит локализованный источник, двумерная область соответствует реальной гео-

^{*} Работа выполнена при поддержке Российского Фонда

Фундаментальных Исследований (код проекта 14-01-00244).

метрии сердца и его желудочков, динамические измерения потенциала проводятся на части внутренней, а не на внешней границе области сердца.

Постановка обратной задачи

Рассмотрим модифицированную модель Фитц-Хью–Нагумо, описывающую распространение возбуждения в миокарде.

$$u_{t} = D\Delta u - v(x, y)u(u - \alpha)(u - 1) - w(x, y) + g(x, y, t),$$

$$(x, y) \in Q, \ t \in (0, T], \quad (1)$$

$$w_{t} = \beta u - \gamma w, \quad (x, y) \in Q, t \in (0, T], \quad (2)$$

$$\frac{\partial u}{\partial n}(x, y, t) = 0, \quad (x, y) \in \Gamma, t \in (0, T], \quad (3)$$

$$u(x, y, 0) = 0, \quad (x, y) \in Q, \quad (4)$$

$$w(x, y, 0) = 0, \quad (x, y) \in Q. \quad (5)$$

Здесь функция u(x, y, t) – это трансмембранный потенциал, функция w(x, y, t) связана с ионными токами, функция g(x, y, t) описывает ло-

кализованный источник возбуждения миокарда, α , β , γ – реактивные коэффициенты, D – коэффициент электропроводности. D, α , β , γ – положительные постоянные. Γ – граница области Q. (Рис.1)

Функция v(x, y) моделирует область сердца, пораженную инфарктом. Эта функция такова, что $v(x, y) \in C^1(Q), v(x, y) \approx 0$ в области $I \in Q$, и $v(x, y) \approx 1$ в $Q \setminus I$, I -область сердца, пораженная инфарктом.

Рис.1

Задача (1) – (5) может быть использована для моделирования процесса возбуждения в сердце, пораженного инфарктом миокарда. В этой модели нелинейный коэффициент модели, описывающий способность миокарда к возбуждению, $F = v(x, y)u(u - \alpha)(u - 1) \approx 0$ в области *I*, что соответствует потери в *I* способности к возбуждению среды.

Будем предполагать, что область *I* задается *n* параметрами $\lambda_1 \dots \lambda_n$ и функция *v* зависит этих параметров: $v = v(x, y; \lambda_1, \dots, \lambda_n)$.

Рассмотрим следующую обратную задачу. Пусть известны коэффициенты D, α , β , γ , а функция $v(x, y; \lambda_1, ..., \lambda_n)$ непрерывна. Требуется определить эту функцию, если задана дополнительная информация о решении двух задач (1)-(5), соответствующих разным функциям $g_i(x, y, t)$. А именно, заданы функции

 $\psi_i(x, y, t) = u_i(x, y, t), \quad (x, y) \in \Gamma_1, \ i = 1, 2,$ где $u_i(x, y, t)$ - решение задачи (1)-(5), соответствующее функции $g_i(x, y, t)$.
(6)

Численный метод решения обратной задачи

Рассмотрим численный метод решения сформулированной обратной задачи.

Пусть для функции $\bar{v} = v(x, y; \bar{\lambda}_1, ..., \bar{\lambda}_n)$ и локализованного источника возбуждения миокарда $g_i(x, y, t)$ прямая задача (1) – (5) имеет решение на границе Γ_1 , равное $\bar{\psi}_i(x, y, t)$. Будем считать, что дополнительная информация $\bar{\psi}_i(x, y, t)$ нам задана с погрешностью ε , т.е. известна функция $\psi_{i\varepsilon}(x, y, t)$, такая, что

$$\sum_{i=1}^{2} \int_{0}^{T} \int_{\Gamma_{1}} (\psi_{i\varepsilon}(x, y, t) - \overline{\psi}_{i}(x, y, t))^{2} dl dt \leq \varepsilon.$$

Будем минимизировать невязку

$$S(\lambda) = \sum_{i=1}^{2} \int_{0}^{1} \int_{\Gamma} (u_i(x, y, t; \lambda_1, \dots, \lambda_n) - \psi_{i\varepsilon}(x, y, t))^2 dl dt$$

градиентным методом с критерием $S(\lambda) < \varepsilon^2$ для окончания процесса минимизации

Рассмотрим вопрос нахождения градиента функции $S(\lambda)$. Найдем её приращение δS . Введем функцию $f(u) = u(u - \alpha)(u - 1)$. Обозначим через λ вектор параметров $\lambda = (\lambda_1, ..., \lambda_n)$. Пусть функции $v(x, y; \lambda)$ соответствует решение задачи (1)–(5) { $u_i(x, y, t; \lambda)$, $w_i(x, y, t; \lambda)$ }, а функции $v(x, y; \lambda + \delta \lambda)$ решение { $u_i(x, y, t; \lambda + \delta \lambda)$, $w_i(x, y, t; \lambda + \delta \lambda)$ }.

boostic matrix

$$\begin{aligned} \delta u_i(x, y, t; \lambda, \delta \lambda) &= u_i(x, y, t; \lambda + \delta \lambda) - u_i(x, y, t; \lambda), \\ \delta w_i(x, y, t; \lambda, \delta \lambda) &= w_i(x, y, t; \lambda + \delta \lambda) - w_i(x, y, t; \lambda). \\ \text{Тогда} \\ f(u_i(x, y, t; \lambda + \delta \lambda)) v(x, y; \lambda + \delta \lambda) - f(u_i(x, y, t; \lambda)) v(x, y; \lambda) \\ &= f(u_i) \sum_{j=1}^n v_{\lambda_j}(x, y; \lambda) \delta \lambda_j + f'_u(u_i) \delta u_i v(x, y; \lambda) + \tilde{R}, \\ \text{гле } \tilde{R} &= O((\delta u)^2 + \delta \lambda^2). \end{aligned}$$

Функции $\delta u_i, \delta w_i$ являются решениями задачи

$$\frac{\partial \delta u_i}{\partial t} = D\Delta \delta u_i - \delta w_i - f(u_i) \sum_{j=1}^n v_{\lambda_j}(x, y; \lambda) \delta \lambda_j - f'_u(u_i) \delta u_i v(x, y; \lambda) - \tilde{R},$$

$$(x, y) \in 0, t \in (0, T]$$

$$(7)$$

$$\frac{\partial \delta w_i}{\partial t} = \beta \delta u_i - \gamma \delta w_i, \qquad (x, y) \in Q, t \in (0, T], (8)$$

$$\frac{\partial \delta u_i}{\partial n} (x, y, t) = 0, \qquad (x, y) \in \Gamma, t \in (0, T], (9)$$

$$\delta u_i (x, y, 0) = 0, \qquad (x, y) \in Q, (10)$$

 $\delta w_i(x,y,0) = 0,$

Тогда приращение функции $S(\lambda_1, ..., \lambda_n)$ равно

 $(x, y) \in Q.$ (11)

 $\delta S = S(\lambda + \delta \lambda) - S(\lambda) =$

$$=\sum_{i=1}^{2}\int_{0}^{T}\int_{\Gamma_{1}}((u_{i}(x,y,t;\lambda+\delta\lambda)-\psi_{i\varepsilon})^{2}-(u_{i}(x,y,t;\lambda)-\psi_{i\varepsilon})^{2})dl\,dt=$$
$$=\sum_{i=1}^{2}\int_{0}^{T}\int_{\Gamma_{1}}(2(u_{i}-\psi_{i\varepsilon})\delta u+(\delta u_{i})^{2})dl\,dt.$$

Получим другой вид для приращения функции $S(\lambda_1, ..., \lambda_n)$. Рассмотрим функции $a_i(x, y, t), b_i(x, y, t)$, являющиеся решениями сопряженных начально-краевых задач

$$\frac{\partial a_i}{\partial t} = -D\Delta a_i - \beta b_i + a_i f'_u(u_i) v(x, y; \lambda), \quad (x, y) \in Q, t \in [0, T), \quad (12)$$

$$\frac{\partial b_i}{\partial t} = a_i + \gamma b_i, \qquad (x, y) \in Q, t \in [0, T), \qquad (13)$$

$$D\frac{\partial a_i}{\partial n}(x, y, t) = 2(u_i - \psi_i), \qquad (x, y) \in \Gamma_1, t \in [0, T], \qquad (14)$$

$$D\frac{\partial a_i}{\partial n}(x, y, t) = 0, \qquad (x, y) \in \Gamma \backslash \Gamma_1, t \in [0, T], \quad (15)$$

$$\begin{aligned} a_i(x, y, 1) &= 0, \\ b_i(x, y, T) &= 0 \end{aligned} (x, y) \in Q, \quad (16) \\ (x, y) \in Q, \quad (17) \end{aligned}$$

Так как функции
$$\delta u_i$$
, δw_i являются решениями (7)–(11), а a_i , b_i – решениями (12)–(17), получим

$$I = \sum_{i=1}^{2} \left(\int_{0}^{T} \iint_{Q} \left[a_{i} \left(\frac{\partial \delta u_{i}}{\partial t} - D\Delta \delta u_{i} + \delta w_{i} + f_{u}'(u_{i}) \, \delta u_{i} \, v(x, y; \lambda) \right) + b_{i} \left(\frac{\partial \delta w_{i}}{\partial t} - \beta \delta u_{i} + \gamma \delta w_{i} \right) + \delta u_{i} \left(\frac{\partial a_{i}}{\partial t} + D\Delta a_{i} + \beta b_{i} - f_{u}'(u_{i}) a_{i} v(x, y; \lambda) \right) + \delta w_{i} \left(\frac{\partial b_{i}}{\partial t} - a_{i} - \gamma b_{i} \right) \right] dx \, dy \, dt) =$$
$$= \sum_{i=1}^{2} \int_{0}^{T} \iint_{Q} \left[(a_{i} \delta u_{i} + b_{i} \, \delta w_{i})_{t} - (Da_{i} \, \Delta \delta u_{i} - D \, \delta u_{i} \Delta a_{i}) \right] dx \, dy \, dt$$

Применив формулу Грина и начальные и граничные условия для функций $\delta u_i, \, \delta w_i, \, a_i, \, b_i, \,$ получим

$$I = \sum_{i=1}^{2} \iint_{Q} (a_{i} \delta u_{i} + b_{i} \delta w_{i})|_{t=0}^{t=T} dx dy - \int_{0}^{T} \int_{\Gamma} \left(Da_{i} \frac{\partial \delta u_{i}}{\partial n} - D\delta u_{i} \frac{\partial a_{i}}{\partial n} \right) dl dt =$$
$$= \sum_{i=1}^{2} \int_{0}^{T} \int_{\Gamma_{1}} 2\delta u_{i} (u_{i} - \psi_{i}) dl dt.$$

С другой стороны, это выражение равно

$$I = -\sum_{i=1}^{2} \int_{0}^{T} \iint_{Q} a_{i}(f(u_{i})\sum_{j=1}^{n} v_{\lambda_{j}}(x, y; \lambda)\delta\lambda_{j} + R)dx dy dt.$$

Тогда приращение невязки равно

$$\delta S = \sum_{i=1}^{2} \left(\int_{0}^{T} \iint_{Q} - a_{i} \left(f(u_{i}) \sum_{j=1}^{n} v_{\lambda_{j}}(x, y; \lambda) \delta \lambda_{j} + R \right) dx \, dy \, dt + \int_{0}^{T} \int_{\Gamma} (\delta u_{i})^{2} \, dl \, dt \right).$$

Пренебрегая величинами второго порядка малости, получим следующее выражение для градиента

$$\frac{\partial S}{\partial \lambda_j} = -\sum_{i=1}^2 \int_0^T \iint_Q a_i f(u_i) v_{\lambda_j}(x, y; \lambda) dx \, dy \, dt \, .$$

С помощью вычисленного таким образом градиента производится переход от $(\lambda_1^m, ..., \lambda_{1n}^m)$ к $(\lambda_1^{m+1}, ..., \lambda_n^{m+1})$. Итерационный процесс останавливается, как только выполняется неравенство $S(\lambda_1, ..., \lambda_n) \leq \delta^2$.

Описанный численный метод решения обратной задачи был применен для определения областей *I* специального вида.

Будем считать

$$v(x, y; \lambda_{1, \dots, \lambda_{n}}) = \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \left(\theta^{2} r(x, y, \lambda) \right),$$

где $r(x, y; \lambda_1, ..., \lambda_n)$ – известная функция, принимающая значения

 $r(x, y; \lambda_1, ..., \lambda_n) < 0, (x, y) \in I$ и $r(x, y; \lambda_1, ..., \lambda_n) > 0, (x, y) \in Q \setminus I$. При описании вычислительных экспериментов приведены примеры функций $r(x, y; \lambda_1, ..., \lambda_n)$, соответствующих областям *I* двух видов – круга и эллипса.

При поиске области *I*, имеющей вид круга, $\theta = 100$, и $r(x, y, \lambda_1, \lambda_2, \lambda_3) = (x - \lambda_1)^2 + (y - \lambda_2)^2 - \lambda_3^2$. При поиске области *I*, имеющей вид эллипса, функция

$$r(x, y, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = \\ = \left(\frac{(x-\lambda_1)\cos(\lambda_5) - (y-\lambda_2)\sin(\lambda_5)}{\lambda_3}\right)^2 + \left(\frac{(x-\lambda_1)\sin(\lambda_5) + (y-\lambda_2)\cos(\lambda_5)}{\lambda_4}\right)^2 - 1.$$

Вычислительные эксперименты

Прямые задачи для модифицированной модели Фитц-Хью-Нагумо

(1)–(5) решались в области Q (Рис.1), представляющей собой сечение сердца и его желудочков горизонтальной плоскостью с помощью метода конечных элементов; для программной реализации использовался MatLab. Число конечных элементов-треугольников при расчетах бралось порядка N = 600.

В качестве функции $g_i(x, y, t)$, моделирующей локализованный источник возбуждения сердца, рассматривались функции

$$g_i(x, y, t) = e^{-\frac{(t-t_0)^2}{\sigma_1^2}} \cdot e^{-\frac{(x-x_i)^2 + (y-y_i)^2}{\sigma_2^2}}$$

Рассматривались следующие параметры модели D = 1, $\alpha = 0.15$, $\beta = 0.005$, $\gamma = 0.025$.

В результате решения прямой задачи вычислялись $\bar{\psi}_i(x, y, t)$, на внутренней границе $(x, y) \in \Gamma_1, t \in [0, T]$, вносилась погрешность эксперимента ε и получались $\psi_{i\varepsilon}(x, y, t)$, такие, что

$$\sum_{i=1}^{2} \int_{0}^{T} \int_{\Gamma_{1}} \left(u_{i}(x, y, t; \lambda_{1}, \dots, \lambda_{n}) - \psi_{i\varepsilon}(x, y, t) \right)^{2} dl \, dt \leq \varepsilon \, .$$

В ходе вычислительных экспериментов решались обратные задачи по восстановлению областей *I* двух видов – круга, определяемого 3 параметрами, и эллипса, определяемого 5 параметрами.

Первое приближение параметров λ и для круга, и для эллипса выбиралось одинаково следующим образом. Область Q разбивалась на некоторое количество конечных элементов. По очереди центр круга фиксированного радиуса помещался в центр очередного конечного элемента k, и вычислялась невязка $S_k(\lambda)$. Тот набор параметров λ , на котором невязка $S_k(\lambda)$ была минимальна, выбирался в качестве первого приближения λ .

Затем с функциями $\psi_{i\epsilon}$ и полученным набором λ решалась обратная задача с использованием описанного градиентного метода.

На Рис.2-3 показаны результаты вычислительного эксперимента для области *I*, имеющей вид круга.

На рис. 2 выбор начального приближения для λ . Отмечены значения $S_k(\lambda)$ для наборов $\lambda_1, \lambda_2, \lambda_3$. Здесь (λ_1, λ_2) – координаты центра круга, а $\lambda_3 = 3$ – его радиус.

Результат – точка с координатами $\lambda_1 = -2.1, \lambda_2 = 87.8$, в которой $S(\lambda) = 12.7$.

На рис. 3 результат восстановления функции

$$r(x, y, \lambda_1, \lambda_2, \lambda_3) = (x - \lambda_1)^2 + (y - \lambda_2)^2 - \lambda_3^2.$$

Пунктирной чертой показана тестовая область инфаркта для набора $\lambda_1 = 0, \lambda_2 = 80, \lambda_3 = 7,$ а сплошной – результат – $\lambda_1 = 0.12, \lambda_2 = 79.6, \lambda_3 = 6.85$. Значение невязки $S(\lambda)$ в данном случае равно $2.58 \cdot 10^{-7}$.

На Рис.4-5 показаны результаты вычислительного эксперимента для области *I*, имеющей вид эллипса.

На рис. 4 выбор начального приближения для λ . Отмечены значения $S_k(\lambda)$ для наборов $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$. Здесь (λ_1, λ_2) – центр симметрии эллипса, $\lambda_3 = \lambda_4 = 1$ - его полуоси, а $\lambda_5 = 0$ – угол наклона.

Результат – точка с координатами $\lambda_1 = 4.034, \lambda_2 = 90.8$, в которой $S_i(\lambda) = 28.1$.

На рис. 5 результат восстановления функции

$$r(x, y, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = \left(\frac{(x-\lambda_1)\cos(\lambda_5) - (y-\lambda_2)\sin(\lambda_5)}{\lambda_3}\right)^2 + \left(\frac{(x-\lambda_1)\sin(\lambda_5) + (y-\lambda_2)\cos(\lambda_5)}{\lambda_4}\right)^2 - 1.$$

Пунктирной чертой показана тестовая область инфаркта для набора $\lambda_1 = 9, \ \lambda_2 = 92, \ \lambda_3 = 8, \ \lambda_4 = 4, \ \lambda_5 = \frac{\pi}{6}, \ a \ сплошной – результат – \lambda_1 = 9.47, \ \lambda_2 = 92.17, \ \lambda_3 = 8.5, \ \lambda_4 = 4.08, \ \lambda_5 = 0.52.$ Значение невязки $S(\lambda)$ в данном случае равно $6.34 \cdot 10^{-6}$.

Рис. 4

Рис.5

Проведенные вычислительные эксперименты показали, что в рамках рассматриваемой постановки обратной задачи положение и форма области, пораженной инфарктом, восстанавливается достаточно удовлетворительно.

Следует отметить, что в случае использования только одного источника возбуждения точность решения обратной задачи существенно ухудшается.

Литература.

1. Sundnes J., Lines G. T., Cai X. et al. Computing the Electrical Activity in the Heart. Springer, 2006.

2. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane// Bull. Math. Biophysics. 1955. no. 17. P. 257–278.

3. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical J. 1961. no. 1. P. 445–466.

4. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. no. 50. P. 2061–2070.

5. Aliev R. R., Panfilov A. V. A simple two-variable model of cardiac excitation// Chaos Solutions and Fractals. 1996. Vol. 7, no. 3. P. 293–301. 6. He Y., Keyes D. E. Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements // Journal of Computational Neuroscience. 2007. **23**. N 2. P. 251–264.

7. A.M.Denisov, E.V.Zakharov, A.V.Kalinin, V.V.Kalinin Numerical method for solving an inverse electrocardiography problem for a quasi stationary case. Journal of Inverse and Ill Posed Problems. 2012, V. 20, N. 4, pp. 501-512.

8. А.М. Денисов, В.В. Калинин Обратная задача для математических моделей возбуждения сердца // Ж. вычисл. матем. и матем. физ. 2010. Т. 50 № 3. с. 539-543.

9. А.М.Денисов, Е.В.Захаров, А.В.Калинин Метод определения проекции точечного очага аритмии на поверхность сердца на основе решения обратной задачи электрокардиографии. Математическое моделирование. 2012, N. 4, с. 22-30.

10. А.М. Денисов, И.А. Павельчак Численный метод определения локализованного начального возбуждения для некоторых математических моделей возбуждения сердца. Математическое моделирование. 2012, N. 7, с. 59-66.

11. I. A. Pavel'chak, S. R. Tuikina Numerical solution method for the inverse problem of the modified fitzhugh–nagumo model //Computational Mathematics and Modeling .2012, V. 23, N 2, pp 208-215.

12. Pavel'chak I.A., Tuikina S.R. Numerical solution of an inverse problem for the modified aliev–panfilov model. Computational Mathematics and Modeling (Springer New York). 2013. TOM 24, № 1, c. 14-21.

13. I. A. Pavel'chak Numerical Method of Determining a Localized Initial Cardiac Excitation for the Aliev–Panfilov Model from Measurements on the Inner Boundary //Computational Mathematics and Modeling ,2014, Volume 25, Issue 3, pp 351-355.

14. A.M.Denisov, E.V. Zakharov, A.V.Kalinin Numerical Solution of the Localized Inverse Problem of Electrocardiography// Computational Mathematics and Modeling, 2015, Volume 26, Issue 2, pp 168-174