Ян Цзяньсюнь

МЕТОД ВЫДЕЛЕНИЯ ПОВЕРХНОСТНЫХ ВОЛН ИЗ СЕЙСМИЧЕСКИХ ДАННЫХ

Введение

В настоящее время активно развиваются сейсмические методы для исследования строения земли. В сейсмологии главным направлением является анализ сейсмических данных получаемых на сейсмических станциях. Эти сигналы состоят из ряда сейсмических волн, вызванных атмосферными процессами, цунами, а также небольшими подвижками в земной коре. Сейсмический сигнал включает в тебя еще и суммарную ошибку приборов. Из сейсмических волн необходимо выделить поверхностные волны, которые распространяются вдоль земной поверхности. По этим волнам возможно определять осредненное строение земных недр в районе измерительной станции.

Теоритически считается, что сейсмический сигнал состоит из нескольких бегущих волн, микросейсмического сигнала, а также некоторой суммарной ошибки приборов, то есть:

$$U_0(t) = u_1(t) + u_2(t) + \dots + u_n(t) + f(t) + \delta(t)$$

где $U_0(t)$ – натуральные сейсмические данные, $u_1(t)$, ..., $u_n(t)$ – бегущие волны, f(t) – микросейсмический сигнал, $\delta(t)$ – ошибка измерений.

Постановка задачи

Если на одной станции измерены сейсмические данные, то путем обработки этих данных можно выделить бегущую волну, и смысл выделения заключается в следующем: если мы проводим интегрирование над усреднением, потом интегрируем, то быстро меняющиеся случайные сигналы пропадают, а медленные сигналы, которые медленно распространены, раздаются (появляются). В результате если мы производим интегрирование несколько раз (в настоящей статье мы проинтегрируем дважды), то мы получаем сигнал свободных случайных помех (такой метод может считаться методом фильтрации). В этом сигнале явно видно структуру бегущей волны, т.е. изменение амплитуды синусоиды. Тогда этим сигналом можно приблизить уравнение бегущей волны и найти бегущую поверхностную волну.

При распространении сейсмических волн сейсмометром записываются сигналы колебания. У каждого сейсмометра существуют функция характеристики прибора и записываемые сигналы Y(t), которые имеют вид свертки:

$$Y(t) = x(t) * i(t),$$

где x(t) – фактические сигналы движения на земной поверхности, а i(t) – характеристика прибора. Поэтому для получения фактических сейсмических сигналов необходимо удалить характеристику прибора i(t).

После удаления характеристики прибора выбираем удобные данные для обработки сейсмических сигналов. Пусть имеются данные $U_0(t)$, t = 0, ..., T, где T – временной интервал измерений, а $U_0(t)$ – колебание по времени. Проведем численный анализ выбранных данных. Определим

$$\overline{U}_{0} = \frac{1}{T} \int_{0}^{T} U_{0}(t) dt , \qquad (1)$$

$$\widetilde{U}_0(t) = U_0(t) - \overline{U}_0, \tag{2}$$

где \overline{U}_0 –среднее значение данных, а \widetilde{U}_0 –изменение сигнала относительно среднего значения \overline{U}_0 . Из полученных $\widetilde{U}_0(t)$ мы хотим выделить низкочастотную составляющую. Для этого проинтегрируем $\widetilde{U}_0(t)$ и найдем $U_1(t)$:

$$U_1(t) = \int_0^t \widetilde{U}_0(t) dt, \qquad (3)$$

При интегрировании высокочастотная составляющая уменьшается по сравнению с низкочастотной частью, т.к.

$$\int_{0}^{t} \cos\omega t dt = \frac{1}{\omega} \sin\omega t, \quad \int_{0}^{t} d\tau \int_{0}^{\tau} \cos\omega t dt = -\frac{1}{\omega^{2}} \cos\omega t - \text{const}$$

const можно убрать за счет выделения среднего значения. Если частоты составляющих в сейсмическом сигнале существенно отличаются, то достаточно провести двукратное интегрирование, чтобы выделить низкочастотный сигнал. Получим:

$$\widetilde{U}_{1}(t) = U_{1}(t) - \frac{1}{T} \int_{0}^{T} U_{1}(t) dt,$$
(4)

$$U_2(t) = \int_0^t \widetilde{U}_1(t) dt, \tag{5}$$

$$\widetilde{U}_{2}(t) = U_{2}(t) - \frac{1}{T} \int_{0}^{T} U_{2}(t) dt.$$
(6)

После выделения низкочастотного сигнала его приближают функцией вида $S(t) = A \sin(\frac{2\pi t}{T} + \varphi)$, где A – амплитуда, φ – фаза, T – период бегущей волны. Таким образом, приближенную функцию можно представить в виде:

$$S(t) = R(t, T, \varphi, A)$$

где под *R* понимаем алгоритм определения при заданных T, φ, A . Неизвестные T, φ и *A* определяются из условия минимизации функции:

$$\int_{0}^{T} \left(\widetilde{U}_{2}(t) - \mathcal{R}(t, T, \varphi, A) \right)^{2} dt = \Phi(T, \varphi, A) .$$
(7)

Запишем условия оптимальности первого порядка:

$$\begin{cases} \frac{\partial \Phi}{\partial A} = 0, \\ \frac{\partial \Phi}{\partial T} = 0, \\ \frac{\partial \Phi}{\partial \varphi} = 0. \end{cases}$$
(8)

Из системы (8) найдём параметры T, φ, A и уточним функцию S(t). Продифференцируем S(t) и получим:

$$u(t) = \frac{d^2 \mathcal{S}(t)}{dt^2}.$$
(9)

где u(t) – функция бегущей волны. Вычтем u(t) из натуральных данных $U_0(t)$:

$$U_1(t) = U_0(t) - u(t).$$
 (10)

Натуральные данные, записываемые сейсмометром, имеют несколько бегущих волн. Поэтому с помощью уравнений (1) -(10)можно вычислить (выделить) бегущие волны.

Обработка сейсмических данных

В действительности период каждой бегущей волны, которая была выделена из сейсмических данных, будет постепенно снижаться. Теоретически в однородном слоистом полупространстве существует от 1 до 3 бегущих волн. Для вычисления количества бегущих волн, мы введем уравнение волны Рэлея и проанализируем его.[1]-[2] Рассмотрим уравнение Рэлея в виде:

$$R = \beta^{2} - 4\alpha^{2} \sqrt{\alpha^{2} - k_{p}^{2}} \sqrt{\alpha^{2} - k_{s}^{2}},$$
 (11)

где $k_p^2 = \frac{\rho \omega^2}{\lambda + 2\mu}$, $k_s^2 = \frac{\rho \omega^2}{\mu}$, $\beta^2 = (2\alpha^2 - k_s^2)^2$.

При распространении волн на земной поверхности, уравнение (11) имеет вид

$$R = \beta^2 - 4\alpha^2 \sqrt{\alpha^2 - k_p^2} \sqrt{\alpha^2 - k_s^2} = 0.$$
(12)

Введем новые переменные:

$$a = \frac{\lambda + 2\mu}{\mu}, x = \frac{k_p}{\alpha}, \tag{12a}$$

Так как получим:

$$\frac{\lambda}{\mu} = a - 2, \qquad \frac{\nu_p}{\nu_s} = \frac{\sqrt{\frac{\lambda + 2\mu}{\rho}}}{\sqrt{\frac{\mu}{\rho}}} = \sqrt{a}$$
(126)

где v_p , v_s –сколость продольной и поперечной волн.

Обозначим
$$k_p^2 = \frac{k_s^2}{a}, k_s^2 = ak_p^2, \frac{k_s}{a} = \sqrt{a}x$$
. Из формулы (12) получаем
 $R = (2 - ax^2)^2 - 4\sqrt{1 - x^2}\sqrt{1 - ax^2} = 0$, при $x \in [0, \infty)$ (13)
или

 $a^{4}x^{6} - 8a^{3}x^{4} + 24a^{2}x^{2} - 16ax^{2} - 16a + 16 = 0$, при $x \in [0, \infty)$ (14)

С помощью новой модели глобальной коры (crust 1.0) [3]-[4] получим приближенные параметры среды на земной поверхности некоторого района, в котором сейсмометр показывает: $v_p = 3.81, v_s = 1.94, \rho = 0.92$. Тогда мы сможем получить коэффициент Ламе $\lambda \approx 6.43, \mu \approx 3.46$ и сразу найдем $a \approx 3.86$. Поэтому из уравнения (14) имеем:

$$\phi(x) = a^4 x^6 - 8a^3 x^4 + 24a^2 x^2 - 16a x^2 - 16a + 16.$$
(15)

Подставив полученный а, найдем

$$\phi(x) \approx 222x^6 - 460x^4 + 295.8x^2 - 45.76 \tag{16}$$

Рисунок 1. На графике формулы (16) мы легко видим одну точку при $\phi(x) = 0.$

Тогда уравнение $222x^6 - 460x^4 + 295.8x^2 - 45.76 = 0$ имеет единственный действительный корень $x_1 = 0.474$ (*Рисунок.1*). Таким образом, можно считать, что в этом случае колебание, которое распространяется в этом районе, имеет только одну бегущую волну. При этом количество бегущих волн связано с параметром *a*. Поскольку $a = \frac{\lambda + 2\mu}{\mu}$, то a > 2. Возьмем например: когда параметр *a* принадлежит интервалу $a \in (2,5]$, проведем следующий эксперимент: при каждом *a* построим график функции (15). Результаты вычислений см. на *Рисунке 2*.

Рисунок 2. $R_n(x) = a_i^4 x^6 - 8a_i^3 x^4 + 24a_i^2 x^2 - 16a_i x^2 - 16a_i + 16$, где $a_i = 2 + \Delta an$, n = 1..30, $\Delta a = 0.1$.

Из рисунка видно, что корни уравнения (14) существуют в трех случаях и зависят от параметра *a*. Таким образом, для нахождения корней уравнения (14) нам нужно определить параметр *a*.

Пусть вводится замена $y = x^2$ в уравнение (14) получаем:

$$a^4y^3 - 8a^3y^2 + 24a^2y - 16ay - 16a + 16 = 0$$
(17)

С помощью дискриминанта кубического уравнения получаем:

$$\Delta = \left(-\frac{8}{3} \cdot \frac{9a-5}{a^4} + \frac{512}{27a^3}\right)^2 + \left(-\frac{64}{9}a^4 + \frac{8}{3} \cdot \frac{3a-2}{a^3}\right)^3 \tag{18}$$

Тогда по формуле (18) имеем следующие условия для решения корней уравнения:

1. При Δ> 0, *a* ≤ 3.11041835, уравнение (17) имеет три вещественных корня, т.е. уравнение (14) имеет три вещественных корня.

2. При $\Delta = 0, a \approx 3.11041835$, уравнение (17) имеет два вещественных корня, т.е. уравнение (14) имеет два вещественных корня.

3. При $\Delta < 0, a \ge 3.11041835$, уравнение (17) имеет один вещественный корень, т.е. уравнение (14) имеет один вещественный корень.

Результаты вычислительного эксперимента

Для проверки осуществляемого метода были выбраны данные по нескольким сейсмическим станциям (номера станций: k011, k012) из сейсмической группы в районе Северного Китая и проведен численный эксперимент. Сначала для исследований выбирались сейсмические данные по вертикальному направлению из станции №k012 (географические координаты: 41°13'02.3"N, 114°17'38.8"E) за 5 дней. По каждому из дней были взяты натуральные данные на четырех больших отрезках времени. Отрезки брались в секундах (40000-42000, 50000-52000, 60000-62000, 70000-72000). После этого данные были дважды проинтегрированы. В результате получились сглаженные картинки (такой метод может считаться методом фильтрации). С помощью уравнений (1)-(6) были проанализированы полученные графики $U_1(t)$ и $U_2(t)$ и выбраны сравнительно устойчивые части. Для этих частей были вычислены приближенные функции S(t) и найдены их периоды (таблица 1). Таким образом, были найдены первые бегущие волны и средний период колебания около 121 секунд.

первый день	T(s)	второй день	T(s)	третий день	T(s)	4-ый день	T(s)	5-ый день	T(s)
41350-41600	116	40100-40400	115	40100-40400	120	40090-40390	116	40900-41150	118
50500-50800	120	41450-41750	117	41360-41660	124	40570-40840	112	41230-41480	121
51000-51400	120	50000-50300	123	50690-50990	112	50630-50880	115	50350-50650	118
51700-52000	119	51420-51720	113	51250-51550	124	51150-51350	114	51450-51750	122
60500-60800	124	60400-60800	127	60000-60300	119	60200-60500	118	60500-60800	120
61120-61420	127	61150-61450	128	61700-62000	115	61160-61460	122	61000-61300	127
61450-61750	125	61500-61800	125					61370-61610	126
70050-70450	124.7	70100-70400	121	70250-70550	128	70190-70490	126	70100-70400	124
71260-71560	121	71300-71600	122.5	71300-71600	119	71360-71610	125.5	71350-71650	129

Таблица1

С помощью уравнений (9) -(10) мы сможем вычесть бегущую волну по каждому выбранному отрезку, и найти новые данные. Метод, который использовался для подсчета первых бегущих волн, позволяет вычислить вторые бегущие волны из полученных новых данных. Получены периоды вторых бегущих волн и средний период колебания около 70 секунд (таблица 2).

Таблица2										
первый день	T(s)	второй день	T(s)	третий день	T(s)	4-ый день	T(s)	5-ый день	T(s)	
41355-41485	70	40020-40150	69	40245-40275	66	40210-40310	69.8	41345-41465	68.5	
50670-50800	76	41450-41585	69	41520-51650	74	40610-40740	65	50355-50465	63	
51200-51330	75	50060-50190	71	50790-50920	65	50745-50865	62	51625-51745	69	
51700-51830	69	51425-51525	70.5	51260-51390	68	51200-51330	70	51460-51580	70	
60665-60795	71.5	60668-60798	71	60000-60130	68.6	60300-60410	69	60660-60790	70.4	
61060-61190	69	61200-61330	70	61868-61998	69.3	61315-61445	72	60500-60630	71.8	
61450-61580	67	61668-61798	72					61300-61420	70.8	
70120-70250	72	70110-70240	69.5	70250-70390	71.8	70250-70380	71	61435-61565	73	
71300-71430	75	71465-71595	71	71465-71595	72	71450-71580	71.5	70250-70380	65.5	

Таким образом, мы выделили две поверхностные бегущие волны из выбранных сейсмических данных. Считается, что уравнение (14) имеет два вещественных корня, т.е. $a \approx 3.11041835$. Тогда согласно (12а)-(12б) мы можем определить следующие параметры на земной поверхности:

$$\frac{\lambda}{\mu} \approx 1.11041835, \qquad \frac{v_p}{v_s} \approx 1.67$$

где v_p –продольная скорость, v_s –поперечная скорость.

Используя более 6000 записей землетрясений в районе $38^{\circ}00' \sim 41^{\circ}00'$ N, $113^{\circ}00' \sim 120^{\circ}00'$ E (с 1 января 1989 года по 30 сентября 1998, балл ML ≥ 1), с помощью техники инверсии на нескольких сейсмических станций китайские научные сотрудники рассчитали соотношение сейсмической скорости до времени прихода Р-волны и S-волны.

Результат расчета V_p/V_s равен около 1.67[4]. В [5] тоже отмечено, что на близком изучаемом районе параметр V_p/V_s земной поверхности равен 1.67~1.69. Таким образом, полученный ответ нашего метода хорошо совпадает с результатами в [4]-[5].

При найденном *а* получим корни уравнения (17): $y_1 \approx 0.273$, $y_2 \approx 1.149$, из $y = x^2$ мы сразу найдем $x_1 \approx 0.522$, $x_2 \approx 1.072$. тогда формулы (12а) имеют вид:

$$x_{1} = \frac{k_{p1}}{\alpha} = \frac{\omega_{1}\sqrt{\frac{\rho}{\lambda+2\mu}}}{\alpha} = \frac{\omega_{1}}{\alpha \nu_{p}} \approx 0.522,$$
$$x_{2} = \frac{k_{p2}}{\alpha} = \frac{\omega_{2}\sqrt{\frac{\rho}{\lambda+2\mu}}}{\alpha} = \frac{\omega_{2}}{\alpha \nu_{p}} \approx 1.072$$

где *ω*₁, *ω*₂ – частоты первой и второй выделенных поверхностных бегущих волн. Откуда получаются следующие формулы:

$$v_p = \frac{\omega_1}{0.522\alpha}, \qquad v_p = \frac{\omega_2}{1.072\alpha}$$

Используя полученные периоды первой и второй бегущих волн рисуем следующие картинки.

Рисунок. 3. а).применение средней частоты первой и второй бегущих волн. b). Применение частоты первой и второй волн на 5 дней (по каждому дней берем среднюю частоту)

Из рисунка видно, что продольные скорости v_p хорошо совпадают с разными случаями. Считается, что полученные результаты настоящего статьи устойчивы.

Благодарю уважаемого китайского профессора Дин Чжифэн (Professor Ding Zhifeng, Institute of Geophysics, China Earth quake Administration) за предоставленные сейсмические данные в районе Северного Китая. В настоящей статье эти данные использовались для проверки нашего метода.

Литература

1. В.И. Дмитриев, Г.В. Аккуратов, Математическое моделирование сейсмического частотного зондирования. –М.: Изд-во Моск. Ун-та, 1985, с.39-66.

2. *Gabi Laske, Guy Masters, Zhitu Ma, and Mike Pasyanos*, Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophysical Research Abstracts Vol. 15, EGU2013-2658, 2013 EGU General Assembly 2013.

3. *Pasyanos, M.E., Masters, G., Laske, G. and Ma, Z.,* LITHO1.0 – An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints, Abstract T11D-09 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec, 2012.

4. *Zhang Tianzhong, Gao Ajia, Huang Rongliang, Liu Qingfang,* Continuous monitoring of focal medium parameters and their changed before Zhangbei earthquake, EARTHQUAKE, Vol. 20, Supplement Sept. , 2000.

5. *ZHANG Xuemin, DIAO Guiling, SHU Peiyi, LIU Suying,* Study on wave velocity ratio (Vp/Vs) of underground media in north China, Seismology and geology, Vol.26, No.2,June, 2004