Ян Цзяньсюнь

ОБРАТНАЯ ЗАДАЧА В ТЕОРИИ ПОВЕРХНОСТНЫХ БЕГУЩИХ ВОЛН СЛОИСТЫХ СРЕД

Введение

В последние годы исследование поверхностных бегущих волн играет важную роль в сейсмическом зондировании. В данной технике волна Релея является главной волной, связанной между поперечной и продольной волнами и распространяющейся вдоль земной поверхности. Она обладает характеристиками: медленного затухания скорости, высокого отношения сигнал-помеха (ОСП), сильной помехозащищённости и существования дисперсии в слоистой среде и широко используется для получения информации о структуре скорости S-волны ближней земной поверхности, литосферы или мантии [1]-[4], Карстовая разведка [5] и т.д.

В рабочем процессе исследования волн Рэлея инверсия дисперсионной кривой является одним из ключевых шагов для получения информации о скорости S-волны в слоистой среде. Она в основном делится на метод линеаризации и метод нелинейной глобальной оптимизации. Метод линеаризации (например, метод демпфированных наименьших квадратов [1]) не только сильно зависит от выбора исходной модели, но и необходимо вычислить информацию о частной производной, на которую непосредственно влияет точность матрицы Якоби. А в методе нелинейной глобальной оптимизации (например, алгоритм имитации отжига [6]-[7], искусственная нейронная сеть [8]-[9], метод глобальной оптимизации роя частиц [10]-[11], генетический алгоритм (ГА) [12]-[17], и т.д.) не нужно вычислять частную производную, этот метод широко применяется в инверсии кривой дисперсии волн Релея.

Метод регуляризации Тихонова сыграл важную роль в исследовании обратной задачи [200-21]. При решении практических проблем он может не только преодолеть некорректность, но и значительно уменьшить распространение погрешности и шумов. В настоящей работе рассматривается новый метод «генетический алгоритм, связанный с методом регуляризации Тихонова (ГАМРТ)» для исследования обратной задачи дисперсии волн Релея.

Прямая задача для расчета кривой дисперсии поверхностных волн и анализ влияющих коэффициентов

Для исследования прямой задачи поверхностных волн большинство работ фокусируется на вычислении дисперсии волны Релея. Классический метод для кусочно-постоянной плоскослоистой среды является метод 'Thomson Haskell' [18]. Фактически в процессе численного расчета возникает проблема потери высокочастотной точности. в настоящей статье мы используем метод импеданса для расчета характеристики бегущих волн из сейсмических данных [19]. Тензор импеданса сейсмической поверхностной волны вводится как величина связывающая напряженности σ_{xz}, σ_{zz} со смещениями u_x, u_z в виде линейных соотношений:

$$\begin{cases} \sigma_{xz} = Z_{xx}u_x + Z_{xz}u_z \\ \sigma_{zz} = Z_{zy}u_x + Z_{zz}u_z \end{cases}$$
(1)

(2)

где

 \hat{Z} – тензор импеданса второго ранга. Отметим, что тензор импеданса непрерывен на разрывах λ , μ и ρ , так как непрерывны напряжения и смещения.

 $\hat{Z} = \begin{vmatrix} Z_{xx} & Z_{xz} \\ Z_{zx} & Z_{zz} \end{vmatrix}$

Если мы определяем тензор импеданса при z = 0, т.е. $\hat{Z}(z = 0) = \hat{Z}^0$, то, согласно граничным условиям (1.9) и (1.10) при z = 0 имеем:

$$\sigma_{xz}(z=0) = Z_{xx}^{0}u_{x}(z=0) + Z_{xz}^{0}u_{z}(z=0) = 0$$

$$\sigma_{zz}(z=0) = Z_{zx}^{0}u_{x}(z=0) + Z_{zz}^{0}u_{z}(z=0) = 0$$
(3)

Для существования бегущей волны, т.е. существования $u_x(0)$ и $u_z(0)$ отличных от нуля, должно выполняться условие:

$$\det \hat{Z}^0 = Z^0_{xx} Z^0_{zz} - Z^0_{xz} Z^0_{zx} = 0$$
(4)

уравнение (4) называется прямой задачей для расчета кривой дисперсии поверхностных волн. Импеданс $\hat{Z}^{0}(\bar{\lambda}, \bar{\mu}, \bar{\rho}, \bar{h}, \omega, \gamma)$ получен из системы уравнения в виде :

$$\begin{cases} \frac{dZ_{xx}}{dz} = i\lambda\mu\gamma(Z_{xz} - Z_{zx}) - (\lambda + 2\mu)Z_{xx}^{2} - \mu Z_{xz}Z_{zx} + \\ + 4\mu^{2}\gamma^{2}(\lambda + \mu) - \omega^{2}\rho\mu(\lambda + 2\mu) \\ \frac{dZ_{xz}}{dz} = -((\lambda + 2\mu)i\mu\gamma Z_{xx} - i\mu\lambda\gamma Z_{zz} - (\lambda + 2\mu)Z_{xx}Z_{xz} - \mu Z_{xz}Z_{zz}) \\ \frac{dZ_{zx}}{dz} = -((\lambda + 2\mu)i\mu\gamma Z_{xx} - i\gamma\mu\lambda Z_{zz} + (\lambda + 2\mu)Z_{zx}Z_{xx} + \mu Z_{zx}Z_{zz}) \\ \frac{dZ_{zz}}{dz} = -((\lambda + 2\mu)i\mu\gamma Z_{xz} - (\lambda + 2\mu)i\mu\gamma Z_{zx} + (\lambda + 2\mu)Z_{zx}Z_{zx} + \mu Z_{zz}) \\ + (\lambda + 2\mu)Z_{xz}Z_{zx} + \mu Z_{zz}^{2} + \omega^{2}\rho\mu(\lambda + 2\mu)) \end{cases}$$

$$(5)$$

Для решения системы необходимо задать начальное значение тензора импеданса при $z = z_N = H$ (поверхность полупространства). Зная $Z(z = H) = \hat{Z}^H$ легко численно решается задача Коши для $\hat{Z}(z)$, т.е.:

$$Z_{xx}^{(H)} = -\frac{\mu^{(H)}\eta_{2}^{(H)}(\eta_{1}^{2(H)} - \gamma^{2})}{\eta_{1}^{(H)}\eta_{2}^{(H)} - \gamma^{2}}$$

$$Z_{xz}^{(H)} = -\frac{i\mu^{(H)}\gamma(\eta_{1}^{2(H)} - 2\eta_{1}^{(H)}\eta_{2}^{(H)} + \gamma^{2})}{\eta_{1}^{(H)}\eta_{2}^{(H)} - \gamma^{2}}$$

$$Z_{zx}^{(H)} = (\lambda^{(H)} + 2\mu^{(H)})\frac{i\gamma(\eta_{1}^{(H)}\eta_{2}^{(H)} - \eta_{2}^{2(H)})}{\eta_{1}^{(H)}\eta_{2}^{(H)} - \gamma^{2}} + i\gamma\lambda^{(H)}$$

$$Z_{zz}^{(H)} = (\lambda^{(H)} + 2\mu^{(H)})\frac{\eta_{1}^{(H)}(\eta_{2}^{2(H)} - \gamma^{2})}{\eta_{1}^{(H)}\eta_{2}^{(H)} - \gamma^{2}}$$
(6)

Таким образом, мы получили прямую задачу для вычисления дисперсии волны Релея (детали о выведении формул (1) -(6) см. в [19]). Так как дисперсионное уравнение (4) зависит от коэффициентов Ламе $\overline{\lambda}$ и $\overline{\mu}$, плотности $\overline{\rho}$ и толщины \overline{h} для слоистых сред, необходимо изучить влияние этих коэффициентов на дисперсию.

Теперь задаем простую экспериментальную модель для слоистой среды (таблица.1). зная постоянные ρ, Vp, Vs легко численно вычислить коэффициенты Ламе λ, μ для каждого слоя.

слои	Глубины(Км)	$\rho/(g.cm^3)$	Vp/(Км/сек.)	Vs / (Км/сек.)
1	10	2.4	3.5	2.1
2	20	2.5	4	2.7
3	∞	3	6	4

Таблица 1. Коэффициенты среды в модели 1

Vp- *скорость продольной волны, Vs*- *скорость поперечной волны.* Далее мы изменим каждый из вышеупомянутых параметров

- 1. коэффициенты $\bar{\mu}$ каждого слоя увеличиваются (или уменьшаются) на 10%, а другие параметры $\bar{\lambda}, \bar{\rho}, \bar{h}$ не изменяются.
- 2. коэффициенты $\overline{\lambda}$ каждого слоя увеличиваются (или уменьшаются) на 10%, а другие параметры $\overline{\mu}, \overline{\rho}, \overline{h}$ не изменяются.
- 3. коэффициенты $\overline{\rho}$ каждого слоя увеличиваются (или уменьшаются) на 10%, а другие параметры $\overline{\lambda}, \overline{\mu}, \overline{h}$ не изменяются.
- 4. коэффициенты \overline{h} каждого слоя увеличиваются (или уменьшаются) на 10%, а другие параметры $\overline{\lambda}$, $\overline{\rho}$, $\overline{\mu}$ не изменяется.

При этих случаях с помощью уравнения (4) мы вычислили дисперсию и сравнили с результатами, вычисленными по исходной модели (рис. 1). Из рисунка 1 легко видно, что изменение коэффициента $\overline{\mu}$ оказывает большое влияние на дисперсию (амплитуда изменения дисперсии более 5%, см. рис.1-(а)), толщина \overline{h} мало влияет на дисперсию (в дисперсию были внесены мелкие изменения около 1.5%, см. рис.1-(d)), влияние $\overline{\lambda}$ и $\overline{\rho}$ на дисперсию в значительной степени можно пренебречь (дисперсия почти не изменяется, см. рис.1-(b), (c)).

Таким образом, в эксперименте обратной задачи, чтобы упростить сложность инверсии, мы только изучаем параметры $\overline{\mu}$ и \overline{h} , которые оказывают большое влияние на дисперсию, а остальные параметры задаются как константы.

Рисунок 1. Влияние изменения параметров $\bar{\lambda}, \bar{\mu}, \bar{\rho}, \bar{h}$ на дисперсию. Метод ГАМРТ

Генетический алгоритм является одним из важнейших эволюционных алгоритмов. Это простой и эффективный новый метод, который был установлен путем моделирования эволюционного процесса биологических генов (наследование, мутация, воспроизведение и селекция) [16]-[17]. В последние годы он широко используется в геофизических проблемах [12]-[15]. Классический ГА состоит из операторов селекции-репродукции, скрещивания, мутации (рис.2). Для решения обратной задачи дисперсии поверхностных волн установим целевую функцию в виде:

$$\Phi(F_{j}) = \left(\frac{\sum_{i=1}^{N} \left(f_{i}^{obs} - f_{i}^{inv}(\bar{\mu}_{j}, \bar{h}_{j})\right)^{2}}{N}\right)^{\frac{1}{2}}$$
(7)

где f_i^{obs} – измеряемые дисперсии в i-й точки периода, f_i^{inv} – вычисленные фазовые скорости поверхностных волн в каждой точке периода (по частоте) после определения параметров популяции каждого поколения, *N*-число точек периода (по частоте).

Рисунок. 2 Блок-схема генетического алгоритма поверхностных волн.

В описанном алгоритме используется термин популяция. Разъясним это понятие подробнее. Установка инвертируемых параметров $\{ \overline{\mu}, \overline{h} \}$ и диапазона поиска, т.е.:

$$\mu_{i} \in \left[\tilde{\mu}_{i} - \Delta \mu_{i}, \tilde{\mu}_{i} + \Delta \mu_{i}\right], i = 1..N,$$
$$h_{j} \in \left[\tilde{h}_{j} - \Delta h_{j}, \tilde{h}_{j} + \Delta h_{j}\right], j = 1..N - 1$$

где $\overline{\mu} = \{\mu_1, \mu_2, ..., \mu_N\}$ – коэффициенты Ламе, $\overline{h} = \{h_1, h_2, ..., h_{N-1}\}$ – толщины, N – число слоя, $\tilde{\mu}_i, \tilde{h}_j$ – соответствующие центральные точки (для решения фактических проблем некоторого района центральные точки могут быть заданы общем значением с помощью модели глобальной коры crust1.0 [22]-[23]).

При выборе начальных популяций инвертируемые параметры произвольно генерируют несколько индивидуумов в пределах диапазона поиска $\{\bar{\mu}, \bar{h}\}_m, m=1..M, M$ – количество популяции (в нашей статье установим популяцию M = 50). Для модели трехслойных сред имеем 5 инвертируемых параметров $\bar{\mu} = \{\mu_1, \mu_2, \mu_3\}$ $\bar{h} = \{h_1, h_2\}$, тогда при установке начальных популяций имеем следующие понятия:

- 1 Популяция=50 индивидуумов ($\{\bar{\mu}, \bar{h}\}_{m}, m = 1..M, M = 50$);
- 1 индивидуум ($\{\overline{\mu}, \overline{h}\}$)=5 инвертируемых параметров $\overline{\mu} = \{\mu_1, \mu_2, \mu_3\}, \ \overline{h} = \{h_1, h_2\}.$

Фактически глобальный поиск на основе этой целевой функции слишком медленный. На начальном этапе поиска значение сходимости можно быстро найти, и оно попадает в локальную конвергенцию, что приводит к неспособности получить глобальное оптимальное решение. Поэтому введем оператор регуляризации в целевой функции:

$$J = \alpha_1 \sum_{k=1}^{M} \left(\bar{\mu}_k^* - \bar{\mu}_k \right)^2 + \alpha_2 \sum_{l=1}^{M-1} \left(\bar{h}_l^* - \bar{h}_l \right)^2$$
(8)

где $\overline{\mu}_k^*$ и $\overline{h_l}^*$ – гипотезы строения, α_1 и α_2 – малые числа (параметры регуляризации). Функция *J* является устойчивой. В какой-то степени можно преодолеть неустойчивость проблемы. Теперь целевая функция переписана в виде:

$$OBJ(F_i) = \Phi(F_i) + J \tag{9}$$

Экспериментальные результаты и сравнение с методами ГА и ГАМРТ для инверсии поверхностных волн в слоистой среде

Для проверки инверсии дисперсии поверхностных волн задаем простую слоистую модель. Из анализа дисперсионной прямой задачи мы узнали, что основными влияющими факторами являются коэффициенты $\bar{\mu}$ и \bar{h} , поэтому в следующей инверсии мы только исследуем $\bar{\mu}$ и \bar{h} и устанавливаем постоянные значения для $\bar{\lambda}$ и $\bar{\rho}$ (табл. 2).

Таблица 2. Трехслойная модель, параметры для инвертирования и диапазон поиска

Слои	Плотность о (Кг/М ³)	λ	Vs	Для инверсии		Диапазон	н поиска
N	p (12/112)			μ	<i>h</i> (Км)	μ	h
1	2.4	8.232	2.1	10.584	10	9.6-12.7	8.0-12.0
2	2.5	14.175	2.7	18.225	10	15.6-21	8.0-12.0
3	3	12	4	48	∞	43.3-52.9	-

Теперь в операторах и параметрах генетического алгоритма мы приводим следующие правила (детали о применении операторов ГА см. в [12]-[17]):

- 1. размер популяции 50, максимальной генетической алгебры 200 поколений.
- 2. оператор селекции-репродукции: алгоритм рулетки,
- 3. оператор селекции: многоточечный селекции, вероятность селекции: 0.8.
- 4. оператор мутации: линейная мутации, вероятность мутации 0.01.

В соответствии с вышеупомянутыми условиями, мы выполнили четыре вычисления инверсии (табл. 3) с помощью классического алгоритма ГА. Нетрудно видеть, что результаты инверсии неустойчивы, особенно полученные параметры для второго слоя существуют большие погрешности. Для этого имеются две причины. Одна из них состоит в не единственности инверсии. Классический ГА является некорректным и может сходится к некоторому локальному решению, не совпадающему с оптимальным решением. С другой стороны, ошибка связана с количеством частотных точек на выбранной дисперсионной кривой (рис.3). Кривая в низкочастотной части хорошо совпадает с постоянной моделью, по мере того, как периоды становятся меньше, подобие кривой будет постепенно ухудшаться. Этот случай вызван неустойчивыми результатами инверсии первого и второго слой. (Чтобы более внимательно изучить эти ошибки, на рисунке 3 приведены увеличенные результаты для этого отрезка по частоте (период), и можно видеть, что эта полоса (этот отрезок) немного более смещен, чем низкочастотная полоса).

Слои	Инверсия 1		Инверсия 2		Инвер	осия 3	Инверсия 4	
	μ	h	М	h	μ	h	μ	h
1	10.508	9.646	10.159	9.464	10.676	10.442	10.374	9.881
2	17.594	10.44	16.737	10.986	19.812	10.733	18.517	10.08
3	47.964	-	47.936	-	48.132	-	47.857	-
	0.72%	3.54%	4.02%	5.36%	0.87%	4.42%	1.98%	1.19%
О. п. (%)	3.46%	4.44%	8.17%	9.86%	8.71%	7.33%	1.6%	0.83%
(/0)	0.08%	-	0.13%	-	0.28%	-	0.3%	-

Таблица 3

О. п. - Относительная погрешность

Для решения этой проблемы мы введем оператор регуляризации Тихонова (9). Сначала необходимо определить гипотезы строения $\bar{\mu}^* \, u \, \bar{h}^*$ (выбранные коэффициенты регуляризации α показаны в таблицах), т.е. следующие случая:

- 1. определены гипотезы строения $\overline{\mu}^*$ и \overline{h}^* значениями левой границы определенного диапазона (табл.4).
- 2. определены гипотезы строения $\overline{\mu}^*$ и \overline{h}^* значениями правой границы определенного диапазона (табл.5).
- 3. определены гипотезы строения $\overline{\mu}^*$ и \overline{h}^* точными значениями заданной модели слоистой среды (табл.6).
- 4. определены гипотезы строения $\overline{\mu}^*$ и \overline{h}^* средними значениями, полученными из 4 результатов с помощью классического алгоритма (табл.7-9).

Рисунок 3. Сравнение кривых дисперсии между заданной модели и 4 инверсии.

Таблица 4. $\bar{\mu}^* u \bar{h}^*$ *берем значения левой границы диапазона из табл.* 2

Слои	Инверсия 1 $\alpha_1 = 0.0007$,		Инверсия 2 $\alpha_1 = 0.0007$,		Инверсия 3 $\alpha_1 = 0.0007$,		Инверсия 4 α_1 =0.0007,	
	$\alpha_2 = 0.0004$		$\alpha_2 = 0.0004$		$\alpha_2 = 0.0004$		$\alpha_2 = 0.0004$	
	μ	h	M	h	μ	h	μ	h
1	10.156	8.13	9.718	8.579	9.095	8.2	10.157	9.308
2	16.339	10.85	17.594	10.91	17.544	9.858	16.077	10.61
3	47.308	-	47.815	-	46.8	-	47.823	-
	4.044	18.7%	8.182%	14.2%	14.1%	18%	4.034%	6.92%
О. п. (%)	10.4%	8.55%	3.46%	9.14%	3.74%	1.42%	11.8%	6.13%
(,0)	1.442%	-	0.385%	-	2.500%	-	0.369%	-

О. п. - Относительная погрешность

Слои	Инверсия 1 $\alpha_1 = 0.0007$, $\alpha_1 = 0.0004$		Инверсия 2 $\alpha_1 = 0.0007$, $\alpha_2 = 0.0004$		Инверсия 3 $\alpha_1 = 0.0007$, $\alpha_2 = 0.0004$		Инверсия 4 $\alpha_1 = 0.0007$, $\alpha_1 = 0.0004$	
	$\alpha_2 = 0.$	1	$\alpha_2 = 0.$	1	$a_2 = 0.$	1	$\alpha_2 = 0.$	1
	μ	h	М	h	μ	h	μ	h
1	10.795	11.207	10.706	10.486	11.269	11.99	11.121	10.856
2	21.013	10.27	19.996	11.14	20.05	9.492	19.987	9.687
3	48.137	-	48.256	-	48.056	-	48.134	-
0	1.99%	12.1%	1.15%	4.86%	6.47%	19.9%	5.074%	8.560%
О. п. (%)	15.3%	2.7%	9.72%	11.4%	10.1%	5.1%	9.67%	3.13%
(70)	0.29%	_	0.53%	_	0.12%	-	0.28%	-

Таблица 5. $\bar{\mu}^*$ и \bar{h}^* берем значения правой границы диапазона из табл.2

О. п. - Относительная погрешность

Таблица 6. $\bar{\mu}^*$ и \bar{h}^* берем точные значения заданной модели слоистой среды

Crow	Инверсия 1 α_1 =0.01,		Инверсия 2 α_1 =0.01 ,		Инверсия 3 α_1 =0.01 ,		Инверсия 4 α_1 =0.01,	
Слои	$\alpha_2 = 0$	0.001	$\alpha_2 = 0.001$		$\alpha_2=0$.001	$\alpha_2 = 0$	0.001
	μ	h	М	h	μ	h	μ	h
1	10.543	9.923	10.585	9.988	10.59	9.998	10.585	10.013
2	18.253	10.152	18.182	10.019	18.172	9.973	18.168	9.94
3	48.025	-	48.013	-	48.023	-	48.005	-
0	0.39%	0.77%	0.009%	0.12%	0.057%	0.02%	0.01%	0.13%
О. п. (%)	0.15%	1.52%	0.236%	0.19%	0.291%	0.27%	0.31%	0.6%
(70)	0.05%	-	0.027%	-	0.048%	-	0.01%	-

О. п. - Относительная погрешность

Из таблиц 4-5 видно, что результаты близки к значениям левой и правой границы определенного диапазона. При выборе точных значений (табл. 6) результаты хорошо совпадают с заданной моделью слоистой среды (табл. 2). Таким образом, с помощью метод ГАМРТ результаты инверсии тесно связаны с гипотезой строения $\bar{\mu}^*$ и \bar{h}^* .

При фактическом наблюдении сейсмических данных мы не сможем узнать точные значения слоистой среды в некотором районе, поэтому мы выбираем средние значения, вычисленные через классический ГА несколько раз, как гипотезы строения для решения обратной задачи.

Слои	Инверсия 1 α_1 =0.0007 ,		Инверсия 2 α_1 =0.0007 ,		Инвер $\alpha_1 = 0.0$	сия 3 0007,	Инверсия 4 α_1 =0.0007 ,	
	$\alpha_2=0.$	0004	$\alpha_2 = 0.0004$		$\alpha_2 = 0.0004$		$\alpha_2 = 0.0004$	
	μ	h	М	h	μ	h	μ	h
1	10.502	9.7214	10.585	10.094	10.522	9.786	10.321	9.714
2	18.259	10.349	18.491	10.07	18.088	10.309	18.489	10.104
3	48.013	-	48.012	-	48.038	-	48.048	-
0 -	0.78%	2.79%	0.009%	0.94%	0.586%	2.14%	2.49%	2.86%
О. п.	0.19%	3.49%	1.460%	0.70%	0.752%	3.09%	1.45%	1.04%
(70)	0.03%	_	0.025%	_	0.079%	-	0.1%	_

Таблица 7. $\bar{\mu}^* u \bar{h}^*$ *берем средние значения 4 результатов из табл.3*

О. п. - Относительная погрешность

Таблица 8. $\bar{\mu}^* u \bar{h}^*$ *берем средние значения 4 результатов из табл.3*

G	Инверсия 5 $\alpha_1 = 0.01$,		Инверсия 6 <i>α</i> ₁ =0.01		Инверсия 7 α_1 =0.002 ,		Инверсия 8 $\alpha_1 = 0.001$,	
Слои	$\alpha_2 = 0.01$		$\alpha_2 = 0.01$		$\alpha_2 = 0.001$		$\alpha_2 = 0.001$	
	μ	h	М	h	μ	h	μ	h
1	10.497	9.827	10.505	9.758	10.592	9.687	10.585	10.096
2	18.29	10.31	18.175	10.23	17.627	10.151	18.649	10.219
3	48.024	-	48.054	-	48.032	-	48.016	-
0 -	0.82%	1.73%	0.744%	2.42%	0.076%	3.13%	0.009%	0.96%
О. П.	0.36%	3.10%	0.27%	2.23%	3.281%	1.51%	2.326%	2.19%
(70)	0.05%	_	0.11%	-	0.067%	_	0.033%	_

О. п. - Относительная погрешность

Таблица 9. $\bar{\mu}^*$ и \bar{h}^* берем средние значения 4 результатов из табл.3

Слои	Инверсия 9 $\alpha_1 = 0.001$,		Инверсия 10 $\alpha_1 = 0.01$,		Инверсия 11 $\alpha_1 = 0.008$,		Инверсия 12 α_1 =0.007,	
	$\alpha_2 = 0.005$		$\alpha_2 = 0.001$		$\alpha_2 = 0.005$		$\alpha_2 = 0.0045$	
	μ	h	μ	h	μ	h	μ	h
1	10.585	10.096	10.939	10.857	10.509	9.892	10.462	9.858
2	18.649	10.219	18.575	9.205	18.449	10.46	17.997	9.92
3	48.016	-	48.059	-	48.085	-	48.081	-
0 -	0.006%	0.96%	3.35%	8.57%	0.71%	1.08%	1.15%	1.42%
О. п.	2.329%	2.2%	1.92%	7.95%	1.229%	4.63%	1.25%	0.80%
(70)	0.033%	-	0.12%	_	0.177%	_	0.169%	-

О. п. - Относительная погрешность

В эксперименте вычислена инверсия 12 раз (табл. 7-9) для выбора различных коэффициентов регуляризации α_1 и α_2 . Из таблиц видно, что по сравнению с полученными результатами в классическом ГА с одной стороны уменьшается погрешность, а с другой значительно улучшается устойчивость.

Заключение

В настоящей статье метод ГАМРТ не только преодолевает проблему сходимости к локальным минимумам, возникающих в классических ГА (рис.4), но и точность и устойчивость результатов инверсии значительно улучшается.

В эксперименте измеряемые дисперсионные кривые, которые мы вводим в модель инверсии (уравнение 9), численно рассчитываются путем введения заданной модели слоистой среды в прямую задачу (4). Ошибкой и шумом кривой в принципе можно пренебречь, поэтому коэффициенты регуляризации α не могут быть хорошо определены. Это также исследовательская работа в будущем времени (для определения коэффициентов регуляризации α связи прямой/обратной задачи и фактическими измеренными дисперсиями, полученными из обработки сейсмических данных).

Литературы

- Xia, J. H., Miller, R. D., Park, C. B., 1999. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves. *Geophysics*, 64 (3): 691-700. doi: 10.1 190/1.1444578
- Huang Zhong-Xian, Li Hong-Yi, Xu Yi. 2014. Lithospheric S-wave velocity structure of west China and neighboring areas from surface wave tomography. Chinese J. Geophysics, 57(12): 3994-4004, doi: 10.6038 /cjg20141212 (in Chinese).
- 3. *Pan Jia-Tie, Li Yong-Hua, Wu Qing-Ju, Yu Da-Xin.* 2014. 3-D S-wave velocity structure of crust and upper-mantle beneath the northeast China. *Chinese Jl. Geophysics*, 57(7): 2077-2087, doi: 10.6038/cjg20140705 (in Chinese)
- 4. Zhang Bi-Xing, Xiao Bo-Xun, Yang Wen-Jie, Cao Si-Yuan, Mou Yong-Guang .2000.Mechanism of zigzag dispersion curves in Rayleigh exploration and its inversion study. Chinese Journal of Geophysics, 43(04): 557-567.
- 5. *Xia, J. H., Chen, C., Li, P. H.*, et al., 2004. Delineation of a Collapse Feature in a Noisy Environment Using a Multichannel Surface Wave Technique. *Geotechnique*, 54 (1): 17-27. doi: 10.1680/geot.54.1.17.36326
- Pei, D. H., Louie, J. N., Pullammanappallil, S. K., 2007. Application of Simulated Annealing Inversion on High-Frequency Fundamental-Mode Rayleigh Wave Dispersion Curves. *Geophysics*, 72 (5): 77-85. doi: 10.1190/1.2752 529
- Cui J W. An improved global optimization method and its application to the inversion of surface wave dispersion curves. Chinese J. Geophys. (in Chinese), 2004, 47 (3): 521~527.
- Feng Hang jian, Zhou Aiguo, Yu Jianjun, Tang Xiaoming. A comparative Study on Plum-Rain Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Chinese J. Earth Science, 41(3): 402-415, 2016 (in Chinese).
- Shirazi, H., Abdallah, I., Nazarian, S., 2009. Developing Artificial Neural Network Models to Automate Spectral Analysis of Surface Wave Method in Pavements. Journal of Materials in Civil Engineering, 21 (12): 722-729
- 10.Song, X. H., Tang, L., Lv, X. C., 2012. Application of Particle Swarm Optimization to Interpret Rayleigh Wave Dispersion Curves. Journal of Applied Geophysics, 84 (9): 1-13. doi: 10.1016/j.jappgeo.2012.05.011

- 11.*CaiWei, SongXianhai, YuanShichuan, HuYing,* A New Misfit Function for Multimode Dispersion Curve Inversion of Rayleigh Waves. Chinese J. Earth Science, DOI: 10. 3799/dqkx. 2017. 531(in Chinese).
- 12.*Malcolm Sambridge, Guy Drijkoningen*, Genetic algorithms in seismic waveform inversion. *Geophysical Journal International*, Volume 109, Issue 2, 1 May 1992, Pages 323–342.
- 13. *Gallagher K. L. Sambridge M. S. Drijkoningen G. G.*, Genetic Algorithms: an evolution on Monte Carlo methods in strongly non-linear geophysical optimization problems, Geophys. Res. Lett., 1991.
- 14.*Paul L. Stoffa and Mrinal K. Sen* (1991). Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms. GEOPHYSICS, 56(11), 1794-1810.
- 15.Shi Y.L., Jin W., Genetic algorithms inversion of lithospheric structure from surface wave dispersion. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 1995, 38 (2): 189~198
- 16.*Martin L. Smith, John A. Scales, and Terri L. Fischer.* (1992). Global search and genetic algorithms. The Leading Edge, 11(1), 22-26.
- 17.*Mrinal K. Sen and Paul L. Stoffa* (1992). "Genetic inversion of AVO." The Leading Edge, 11(1), 27-29.
- 18. *Haskell, N. A.*, 1953. The dispersion of surface waves on multilayered media, Bull. Seism. Soc. Am., 43, 17-34.
- Yang Jianxun, Calculation of the Characteristics of Traveling Waves in Layered Media, Computational Mathematics and Modeling, Vol. 29, No. 3, July, 2018, 287-298
- 20. *Тихонов А.Н., Арсенин В.Я.* Методы решения некорректных задач. М.: Наука, 1986. 288 с.
- 21. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Наука, 1979. 432 с.
- 22.Gabi Laske, Guy Masters, Zhitu Ma, and Mike Pasyanos, Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophysical Research Abstracts Vol. 15, EGU2013-2658, 2013 EGU General Assembly 2013.
- 23.*Pasyanos, M.E., Masters, G., Laske, G. and Ma, Z.,* LITHO1.0 An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints, Abstract T11D-09 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec, 2012.