Факультет вычислительной математики и кибернетики

На правах рукописи УДК 519.6

Подрыга Виктория Олеговна

Моделирование теплофизических свойств веществ методами молекулярной динамики с использованием параллельных вычислений

Специальность 05.13.18 – математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Институте прикладной математики имени М. В. Келдыша Российской академии наук.

Научный руководитель:	доктор физико-математических наук, профессор, член-корреспондент РАН Четверушкин Борис Николаевич
Официальные оппоненты:	доктор физико-математических наук, профессор Попов Александр Михайлович
	доктор физико-математических наук Поляков Сергей Владимирович
Ведущая организация:	Московский физико-технический институт (государственный университет).

Защита диссертации состоится « <u>30</u> » <u>ноября</u> 2011 г. в 15 час. 30 мин. на заседании диссертационного совета Д 501.001.43 при Московском государственном университете имени М. В. Ломоносова по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ, 2-й учебный корпус, факультет ВМК, аудитория 685.

С диссертацией можно ознакомиться в библиотеке факультета ВМК МГУ имени М. В. Ломоносова. С текстом автореферата можно ознакомиться на официальном сайте ВМК МГУ имени М. В. Ломоносова <u>http://www.cmc.msu.ru</u> в разделе «Наука» - «Работа диссертационных советов» - «Д 501.001.43».

Автореферат разослан «____»____ 2011 г.

Ученый секретарь диссертационного совета Д 501.001.43 доктор физико-математических наук, профессор

Захаров Е. В.

Актуальность. Современная вычислительная техника дает возможность с компьютерного моделирования помощью решать недоступные ДЛЯ аналитического решения задачи на микроскопическом уровне. Компьютерная молекулярная динамика является одним из наиболее мощных вычислительных методов, эффективно применяемых для моделирования физических, химических и биологических систем. В молекулярной динамике (МД) исследуемая система представляется совокупностью взаимодействующих атомов или молекул, движущихся по законам классической механики. Благодаря развитию и применению компьютерных технологий и графических методов анализа МД-моделирования эффективность применяемых методов неуклонно возрастает. Моделирование реальных физических систем, например, кристаллов или огромных биологических молекул на базе методов МД представляет собой определяющее перспективное направление ближайшем будущем. В Необходимым условием для расчета задач моделирования динамических процессов, решаемых с помощью метода молекулярной динамики, является равновесное макроскопическое состояние системы при выбранных тепловых условиях в начальный момент времени. Получение характеристик состояния термодинамического равновесия системы является отдельной задачей, и чаще всего их получают экспериментально, что является дорогостоящим, трудоемким и длительным процессом.

Одним из основных этапов решения задач в молекулярной динамике является выбор модели взаимодействия атомов системы, которая позволит получать в поставленных условиях реалистичные данные, наиболее схожие с результатами эксперимента. Взаимодействие частиц описывается с помощью потенциала, который определяется исходя из свойств моделируемого вещества, его агрегатного и термического состояний. Несмотря на существование большого количества различных видов потенциалов, ограничения в подборе параметров и их неспособности воспроизвести полный набор физических характеристик порождают существенные сложности в выборе подходящего потенциала при моделировании процессов в узконаправленных задачах.

На каждом шаге моделирования решается система обыкновенных дифференциальных уравнений второго порядка, соответствующая второму закону Ньютона и описывающая движение частиц молекулярно-динамической системы. При решении задачи необходимо подобрать оптимальную численную схему, аппроксимирующую уравнения движения. Выбор схемы численного интегрирования обуславливается требованиями устойчивости и минимальности затрат машинного времени при расчете точек фазовой траектории.

Важным моментом является выбор временного шага интегрирования уравнений движения. Следует учитывать, что достаточно большая его величина приводит к несохранению полной энергии и неустойчивым численным решениям, то есть к таким, которые все больше отклоняются с течением времени от истинного решения. С другой стороны, размер шага интегрирования определяет реальное время моделирования системы. Существенно малый временной шаг может привести к тому, что за время компьютерного эксперимента система не достигнет равновесия.

Одними из основных инструментов моделирования задач МД в России и прикладных программ, ориентированные мире являются пакеты на высокопроизводительные вычислительные системы. Ввили развития суперкомпьютеров, построенных на основе графических плат, встает вопрос о переносе пакетов прикладных программ на новые платформы для повышения эффективности их использования и расширения диапазона решаемых задач за счет роста производительности вычислительных мощностей. По этой причине актуальным является развитие собственных компьютерных разработок – разработок программных комплексов, позволяющих моделировать задачи молекулярной динамики и являющихся более доступными в использовании.

Следует отметить, что в настоящее время все больший интерес у специалистов по математическому моделированию вызывают гетерогенные вычислительные системы, основанные на графических ускорителях; алгоритмы молекулярной динамики являются одними из алгоритмов, эффективно реализующихся на подобных архитектурах.

Вышесказанное приводит к необходимости разработки новых математических моделей, новых алгоритмов, параллельных программ и методов анализа результатов для исследования задач методом молекулярной динамики.

Цели работы.

- 1. Моделирование процесса установления термодинамического равновесия систем веществ, имеющих разные структуры, методами молекулярной динамики.
- 2. Исследование зависимости структуры и характеристик рассматриваемого вещества от геометрии расчетного объема, количества частиц и температуры.
- 3. Разработка алгоритмов моделирования и анализа результатов молекулярных расчетов для систем атомов в разных агрегатных состояниях.
- 4. Создание программной реализации с использованием высокопроизводительных технологий.

Научная новизна. Предложены и реализованы алгоритмы по моделированию процесса установления термодинамического равновесия методами молекулярной динамики систем веществ, имеющих разные структуры (газы, металлы).

Теоретическая и практическая значимость.

- 1. Создана оригинальная молекулярно-динамическая программа, позволяющая изучать зависимость структуры и характеристик исследуемого вещества от геометрии расчетного объема, разного количества частиц и от температуры.
- 2. Получены термодинамические характеристики для систем аргонового газа в объемной геометрии и алюминия в геометрии пластины.
- 3. Предложен и реализован адаптивный алгоритм подбора шага интегрирования, позволяющий обеспечивать контроль над изменением полной энергии системы в течение всего времени расчета.

- 4. Для определения значения средних температур в данной работе конструируются методы анализа, основанные на изучении экспоненциального показателя равновесного распределения.
- 5. Проведен анализ временного параметра алгоритма теплового контроля (термостата) для эффективного получения желаемой температуры в образце.
- 6. Разработаны и реализованы алгоритмы параллельных расчетов на гибридных вычислительных комплексах при моделировании установления термодинамического равновесия систем веществ в разных агрегатных состояниях. Параллельная реализация адаптирована для применения технологии CUDA с учетом эффективного распределения данных.

Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на следующих конференции и семинарах:

- XVIII-й Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов – 2011» в секции «Вычислительная математика и кибернетика», МГУ имени М. В. Ломоносова (Москва, апрель 2011);
- 2. научном семинаре «Математическое моделирование» под руководством профессора В. Ф. Тишкина и профессора А. А. Кулешова в ИПМ имени М. В. Келдыша РАН (Москва, май 2011);
- научном семинаре кафедры вычислительных методов факультета ВМК МГУ имени М. В. Ломоносова под руководством профессора А. В. Гулина (Москва, май 2011);
- 4. научном семинаре кафедры информатики МФТИ под руководством профессора И. Б. Петрова (Москва, сентябрь 2011).

Публикации. Основные результаты диссертации опубликованы в трех работах, две из которых в изданиях, рекомендованных ВАК [1, 3].

Структура и объем диссертации. Диссертация состоит из оглавления, введения, четырех глав, заключения и списка литературы. Полный объем диссертации составляет 114 страниц, включая 21 иллюстрацию и 2 таблицы, пронумерованные по главам. Список литературы содержит 112 наименований.

Содержание работы

Во введении формулируются цели и задачи диссертации, показывается актуальность, научная новизна, теоретическая и практическая значимость работы. Описывается структура диссертации.

В первой главе, носящей обзорный характер, рассмотрены различные модельные потенциалы межмолекулярного взаимодействия, являющиеся основой расчетов с позиций молекулярной и статистической физики. Кроме того, в этой главе описаны общие способы постановки и алгоритмы решения задач методами молекулярной динамики.

Постановка задачи включает в себя написание уравнений движения, условий поведения системы на границе рассматриваемой области в зависимости от формы материала, установление характеристик моделируемого вещества для задания начальных условий и определения принципа взаимодействия атомов в

системе, выбор численной схемы интегрирования уравнений движения с учетом внешних воздействий, если таковые имеются.

Во второй главе приведена постановка задачи для установления термодинамического равновесия в системе частиц. Данная глава содержит две основные части, в которых описываются частные постановки задач для системы атомов аргона и системы атомов алюминия.

В молекулярной динамике частицы двигаются согласно законам классической механики:

$$m \cdot \mathbf{a} = \mathbf{F} \tag{2.1}$$

где *m* – масса частицы, **a** – ускорение частицы, **F** – суммарная сила, действующая на данную частицу.

Применив замену вектора ускорения первой производной по времени вектора скорости V_i для каждой частицы, значение которого соответствует первой производной по времени от величины радиус-вектора *i*-ой частицы \mathbf{r}_i , получим систему из 2*N* обыкновенных дифференциальных уравнений движения для *i* частиц с массой *m*, решая которую получим характеристики динамики частиц:

$$\begin{cases} \mathbf{m} \cdot \frac{d\mathbf{V}_i}{dt} = \mathbf{F}_i \\ \frac{d\mathbf{r}_i}{dt} = \mathbf{V}_i \end{cases}, \quad i = 1..N, \qquad (2.2)$$

где \mathbf{F}_i – равнодействующая сил для *i*-ой частицы, N – общее число частиц, составляющих систему.

Правая часть уравнения движения (2.1) представляет собой суммарную силу взаимодействия, действующую на частицу с номером *i*. Силы выражаются через функцию, зависящую от потенциальной энергии.

Потенциальная энергия системы U вычисляется через сумму потенциальной энергии каждой частицы U_i :

$$U = \sum_{i=1}^{N} U(U_i)$$
(2.3)

Кинетическая энергия системы *КЕ* вычисляется как сумма кинетической энергии каждой частицы:

$$KE = \sum_{i=1}^{N} ke_{i},$$

$$ke_{i} = \frac{m|\mathbf{V}_{i}|^{2}}{2}, \quad i = 1..N,$$
(2.4)

где *ke_i* – кинетическая энергия частицы с номером *i*;

 $|V_i|$ – длина вектора скорости *i*-ой частицы.

Полная энергия системы *Е* представляет собой сумму кинетической энергии системы и потенциальной энергии системы:

$$E = KE + U$$

(2.5)

В первой части главы 2 рассмотрена постановка для системы атомов аргона. Целью задачи является получить равновесное состояние системы

частиц с расчетной областью в объемной геометрии, что означает определение на всех границах условия периодичности (рис. 2.1 а).

Рис. 2.1. Графическая реализация периодических граничных условий: а – частицы из рассматриваемой области закрашены в темный цвет [1]; б – распределение атомов алюминия в ГЦК решетке для одной ячейки.

Для моделирования бесконечной области вдоль координатных осей X, Y, Z используются периодические граничные условия с периодами L_x, L_y, L_z соответственно.

Для частицы, покидающую расчетную область через правую границу $x = L_x$:

$$\begin{cases} \mathbf{V}' = \mathbf{V} \\ x' = (x - L_x) \in [0, L_x) \\ y' = y \\ z' = z \end{cases}$$
 (2.6.1)

Аналогично для частицы, покидающей расчетную область через левую границу x = 0:

$$\begin{cases} \mathbf{V}' = \mathbf{V} \\ x' = (x + L_x) \in [0, L_x) & \text{ДЛЯ} \quad -L_x \le x < 0 \\ y' = y \\ z' = z \end{cases}$$
(2.6.2)

Взаимодействие с частицами, находящимися за пределами расчетной области $L_x \leq x' < (L_x + r_c)$, моделируется с использованием частиц $0 \leq x < r_c$ из расчетной области, радиус-векторы которых корректируются следующим образом:

для частиц из расчетной области:

 $\mathbf{r_i'} = \mathbf{r_i}$, $0 \le x_i < L_x$,

для частиц за пределами расчетной области:

 $\mathbf{r_i'} = \mathbf{r_i} + \mathbf{e_x} L_x$, $L_x \le x_i' < (L_x + r_c)$,

здесь \mathbf{r}_i – радиус-вектор соответствующей частицы из расчетной области $0 \le x_i < r_c; r_c$ – радиус «обрезания» используемого модельного потенциала.

Аналогичным образом определяются периодические граничные условия вдоль координатных осей *Y* и *Z*.

Начальные условия включают распределение координат и скоростей частиц.

Рассматривается область кубической формы, заполненная равномерно по осям частицами, количество которых рассчитывается следующим образом:

$$N = N_1 \cdot N_2 \cdot N_3, \tag{2.7}$$

где N₁, N₂, N₃ – число частиц по каждой из осей X, Y, Z соответственно.

При условии равномерного заполнения области по осям с одинаковым шагом Δh имеем:

$$N_1 = N_2 = N_3, \quad \Delta h = \frac{Lx}{N_1} = \frac{Ly}{N_2} = \frac{Lz}{N_3}$$

Тогда общее количество частиц (2.7): $N = (N_1)^3$ (2.8)

Координата каждой частицы вычисляется по формуле:

$$r_k^j = r_k^0 + l \cdot \Delta h , \quad j = 1..N$$

$$r^0 = (0;0;0) , \quad l = 0..(N_k - 1), \quad k = 1;2;3$$
(2.9)

Начальные скорости частиц задавались с одинаковыми значениями по абсолютной величине $|\mathbf{V}_0|$ и случайно распределенными по направлениям. Компоненты вектора скорости $\mathbf{V}(V_x, V_y, V_z)$ одной частицы получаются следующим образом:

$$V_{x} = |\mathbf{V}_{0}| \cdot \cos\theta \cdot \cos\varphi,$$

$$V_{y} = |\mathbf{V}_{0}| \cdot \cos\theta \cdot \sin\varphi,$$

$$V_{z} = |\mathbf{V}_{0}| \cdot \sin\theta,$$

(2.10)

где случайная переменная θ равномерно распределена в $[-\pi/2; \pi/2)$, а случайная переменная φ – в интервале $[0; 2\pi)$.

Выбран парный потенциал взаимодействия, потому межмолекулярный потенциал вычисляется как сумма потенциалов между каждыми двумя частицами с $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ – расстоянием между *i*-ой и *j*-ой частицами:

$$U_i = \sum_{j \neq i} u(r_{ij}), \quad j = 1..N,$$
 (2.11)

Потенциальная энергия системы U:

$$U = \frac{1}{2} \sum_{i=1}^{N} U_i$$
 (2.12)

В качестве потенциала взаимодействия выбран потенциал Леннарда-Джонса [2].

$$u(r_{ij}) = D\left[\left(\frac{\alpha}{r_{ij}}\right)^{12} - 2\left(\frac{\alpha}{r_{ij}}\right)^{6}\right], \qquad (2.13)$$

где D – энергия связи молекул (глубина потенциальной ямы в точке минимума потенциальной энергии); $\alpha = \sqrt[6]{2}\sigma$ – «длина связи» (положение равновесия): $|u(\alpha)| = D$, $u'(\alpha) = 0$; σ – газокинетический диаметр молекулы.

Для аргона эти величины равны: $D = 165 * 10^{-23}$ Дж, $\alpha = 0,38$ нм, $\sigma = 0,34$ нм.

С целью оптимальности расчетов рассматривается потенциал (2.13) в форме:

$$u(r_{ij}) = \begin{cases} D\left[\left(\frac{\alpha}{r_{ij}}\right)^{12} - 2\left(\frac{\alpha}{r_{ij}}\right)^{6}\right] - u_{cut} , \quad r_{ij} \le r_{c} \\ 0 , \quad r_{ij} > r_{c} \end{cases}, \quad u_{cut} = D\left[\left(\frac{\alpha}{r_{c}}\right)^{12} - 2\left(\frac{\alpha}{r_{c}}\right)^{6}\right] \quad (2.15)$$

Здесь u_{cut} способствует сглаживанию функции, то есть помогает избежать разрывность функции при $r_{ij} = r_c$; $r_c = 2,5*\sigma$ – радиус «обрезания» потенциала, для аргона $r_c = 0,85$ нм.

При большом удалении частиц друг от друга значение энергии взаимодействия таких частиц становится мало, поэтому значение потенциальной функции считается близким нулевому.

Силы, действующие на частицу с номером *i*, выражаются через потенциальную энергию этой частицы:

$$F_{i} = -\frac{d\sum_{j \neq i} u(r_{ij})}{dr_{ij}} = \sum_{j \neq i} f(r_{ij}), \qquad (2.16)$$

где $f(r_{ij})$ – силы взаимодействия между двумя частицами, которые для потенциала Леннарда-Джонса (2.13) принимают вид:

$$f(r_{ij}) = \frac{12D}{\alpha} \left[\left(\frac{\alpha}{r_{ij}} \right)^{13} - \left(\frac{\alpha}{r_{ij}} \right)^{7} \right]$$
(2.17)

Моделирование движения атомов выполнено при помощи разностной схемы Верле [3].

$$r^{n+1} = r^n + V^n \Delta t + \frac{a^n (\Delta t)^2}{2}, \qquad (2.18)$$

$$V^{n+1} = V^n + \frac{(a^{n+1} + a^n)\Delta t}{2}$$
(2.19)

Здесь Δt – шаг интегрирования (по времени), n – номер шага, a – ускорение частицы, получаемое подстановкой рассчитанных по формуле (2.16) значений F в правую часть уравнений (2.1).

Для решения поставленной задачи используем следующий алгоритм:

1) Расчет по формуле (2.18) новых координат частиц \mathbf{r}_{i}^{n+1} для момента времени $t^{n+1} = t^{n} + \Delta t$, где n – номер шага.

2) Проверка граничных условий (2.6).

3) Вычисление значения парциальной U_i^{n+1} (2.11) и суммарной потенциальной энергии системы U^{n+1} (2.12) частиц и сил \mathbf{F}_i^{n+1} (2.16), действующих на частицы.

4) Расчет новых скоростей частиц V_i^{n+1} для момента времени t^{n+1} по выражению (2.19).

5) Вычисление кинетической энергии системы KE^{n+1} по формуле (2.4).

6) Вычисление полной энергии системы E^{n+1} (2.5) для момента t^{n+1} .

Этапы 1) – 6) повторяются на каждом шаге по времени.

С целью слежения за изменением полной энергии системы в работе предлагается алгоритм, в котором вычисляется на каждом шаге величину $\delta_E = |E^{n+1} - E^n|/|E^n|$, характеризующую относительное изменение полной энергии за время одного шага. Введем ограничение на эту величину сверху и снизу и свяжем ее с изменением временного шага согласно следующему правилу:

- 1) Если $\delta_E > 10^{-4}$, то $\Delta t = \Delta t/2$ и пересчитываем все величины с новым шагом.
- 2) Если $\delta_E < 10^{-6}$, то $\Delta t = 3\Delta t/2$ и пересчитываем все величины с этим новым шагом.
- 3) Если $10^{-6} ≤ \delta_E ≤ 10^{-4}$, то продолжаем счет программы с прежним шагом.

Необходимо отдельно отметить присутствие в знаменателе величины E^n . При большом числе частиц суммарная погрешность вычислений разности энергий на новом и предыдущем шагах может принимать большие значения, нормирование погрешности на величину E^n позволяет установить универсальные значения для допустимых границ ее изменения. Это позволяет обеспечивать контроль над изменением энергии в широком диапазоне ее значений.

Во второй части главы 2 описана постановка задачи для системы атомов алюминия. Целью задачи является получить равновесное состояние системы при необходимой температуре. Расчетная область имеет геометрию бесконечной пластины, что означает определение по осям X и Y периодичных граничных условий с периодами Lx и Ly соответственно, по оси Z условия не накладываются.

Начальное распределение координат определяется в соответствии со структурой кристалла алюминия. Алюминий имеет кубическую гранецентрированную кристаллическую решетку (ГЦК) с параметром (ребром элементарной ячейки) rcr = 0.4 нм.

Рассматриваемая система представляет собой параллелепипед со сторонами *Lx*, *Ly*, *Lz*.

 $\mathbf{L} = (Lx, Ly, Lz) = \mathbf{k} \cdot rcr$ – размеры рассматриваемой области по осям *X*, *Y*, *Z*, где $\mathbf{k} = (k_x, k_y, k_z)$ – количество элементарных ячеек по направлениям *X*, *Y*, *Z* соответственно.

Таким образом, имеем параллелепипед из $k_x \cdot k_y \cdot k_z$ кристаллов алюминия, решетка кристалла гранецентрированная, что соответствует количеству частиц: $N = N_1 + N_2$,

где $N_1 = k_x k_y (k_z + 1)$ – количество частиц в узлах решетки;

 $N_2 = k_x k_y (k_z+1)+2k_x k_y k_z$ – количество частиц в центрах граней решетки.

Общее количество частиц: $N = 2k_x k_y (2k_z + 1)$ (2.20)

Учитывая граничные условия и используя (2.20), получаем для одного кристалла количество частиц N=6, что можно увидеть на рис. 2.1 б и посчитать по формуле: $N=2\cdot1\cdot1\cdot(2\cdot1+1)=2\cdot3=6$.

Координаты задаются следующим образом:

$$X_{n}^{i} = X_{n}^{\min} + l \cdot rcr, \quad i = 1..N, \quad l = 0..(j_{n} - 1), \quad n = 1; 2; 3$$

$$X^{\min} = (x^{\min}, y^{\min}, z^{\min}), \quad j = (j_{1}, j_{2}, j_{3}), \quad (2.22)$$

где $x^{\min}, y^{\min}, z^{\min}$ – точки начала отсчета координат; j_1, j_2, j_3 – количества точек по направлениям X, Y, Z соответственно.

Значения коэффициентов:

- 1) для частиц в узлах решетки: $X^{\min} = (0, 0, 0), j = (k_x, k_y, k_z + 1), i = 1..N_1, N_1 = k_x k_y (k_z + 1)$
- 2) для частиц в центрах граней, параллельных плоскости(x, y): $X^{\min} = (\delta, \delta, 0), \quad \delta = rcr/2, \quad j = (k_x, k_y, k_z + 1), \quad i = (N_1 + 1)..N_2,$ $N_2 = N_1 + k_x k_y (k_z + 1)$
- 3) для частиц в центрах граней, параллельных плоскости(x,z): $X^{\min} = (\delta, 0, \delta), \quad \delta = rcr/2, \quad j = (k_x, k_y, k_z), \quad i = (N_2 + 1)..N_3,$ $N_3 = N_2 + k_x k_y k_z$
- 4) для частиц в центрах граней, параллельных плоскости(y,z): $X^{\min} = (0, \delta, \delta), \quad \delta = rcr/2, \quad j = (k_x, k_y, k_z), \quad i = (N_3 + 1)..N_4,$ $N_4 = N_3 + k_x k_y k_z,$ где $N_4 = N$.

Значения начальных векторов скоростей генерируются из распределения Максвелла, соответствующего значению температуры T = 10 К. Компоненты вектора скорости $\mathbf{V}(V_x, V_{y}, V_z)$ получены с помощью преобразования Бокса-Мюллера [4]:

$$V_{x} = \sqrt{-2\sigma^{2} \ln \xi_{1}} \cos(2\pi\xi_{2}),$$

$$V_{y} = \sqrt{-2\sigma^{2} \ln \xi_{1}} \sin(2\pi\xi_{2}),$$

$$V_{z} = \sqrt{-2\sigma^{2} \ln \xi_{3}} \cos(2\pi\xi_{4}),$$
(2.23)

где переменные $\xi_1, \xi_2, \xi_3, \xi_4$ – случайные независимые переменные, равномерно распределенные в (0;1); $\sigma^2 = k_b T/m$ – параметр распределения; m – масса частицы, для алюминия $m = M \cdot m_p = 6.8 \cdot 10^{-27}$ кг; $k_b = 1.38 \cdot 10^{-23}$ Дж/К – постоянная Больцмана.

Межмолекулярное взаимодействие описывается с помощью потенциала погруженного атома [5]:

$$U = \sum_{i} C(n_{i}) + \sum_{j < i} u(r_{ij}), \quad i = 1..N, \quad j = 1..N$$

$$n_{i} = \sum_{k \neq i} n(r_{ik}), \quad k = 1..N$$
(2.24)

где $u(r_{ij}) = u(|\mathbf{r}_i - \mathbf{r}_j|) = u(r)$ – потенциал парного взаимодействия между *i*ой и *j*-ой частицами; $C(n_i)$ – это энергия *i*-го атома за счет воздействия электронов соседних *k* атомов, n_i – суммарная электронная плотность, создаваемая атомами системы, окружающими *i*-ую частицу; $n(r_{ik})$ – это электронная плотность, создаваемая k-ым атомом в месте расположения i-ого атома.

В качестве функции парного взаимодействия $u(r_{ij})$ и функции погружения *i*-го атома $C(n_i)$ была выбрана форма, предложенная в работе [6]:

$$u(r_{ij}) = \left(\frac{1}{a_1 r_{ij}^2} - a_2\right) \left(a_1 r_{ij}^2 - a_1 r_c^2\right)^{10} \left(\left(a_1 r_{ij}^2 - a_1 r_c^2\right)^6 + a_3 a_1^6 r_{ij}^{12}\right) ,$$

$$C(n_i) = \frac{b_1 n_i \left(b_2 + \left(b_3 + n_i\right)^2\right)}{\left(1 + b_4 n_i\right)} , \quad n(r_{ik}) = \frac{c_1 \left(r_{ik}^2 - r_c^2\right)^2}{1 + \left(c_2 r_{ik}^2\right)^3} , \qquad (2.25)$$

где r_c – радиус «обрезания» потенциала, для алюминия $r_c \equiv 0.6875$ нм.

При большом удалении частиц друг от друга значение энергии взаимодействия таких частиц становится мало. С целью оптимальности расчетов принято рассматривать потенциал (2.24) в заданной форме (2.25) при условиях:

 $u(r \ge r_c) \equiv 0, \quad n(r \ge r_c) \equiv 0.$

Константы а, b, с для алюминия принимают следующие значения [6]:

 $\begin{array}{ll} a_1 = 2.9275228176598036; & b_3 = 14.868297626731845; \\ a_2 = 5.1028014804162156; & b_4 = 1.608095393177309; \\ a_3 = 111.37742236893590; & c_1 = 0.58002942432410864; \\ b_1 = 8.1106000931637006; & c_2 = 8.2981185422063639 \\ b_2 = -334.57493744623503; \end{array}$

Величина силы взаимодействия зависит от потенциальной энергии и имеет следующий вид:

$$F_i = -\frac{d(C(n_i) + \sum_{j \neq i} u(r_{ij}))}{dr}$$
(2.26)

Для достижения системой необходимой температуры применяется специальный алгоритм - термостат. В работе выбран термостат Берендсена [7]. Изменение кинетической энергии моделируется путем перемасштабирования скоростей атомов молекулярной системы на каждом шаге:

$$\lambda = \sqrt{1 + \frac{\Delta t}{\tau_b} \left(\frac{T_b}{T(t - \Delta t)} - 1\right)},$$
(2.27)

где λ – коэффициент пересчета скоростей, T(t) – текущее значение температуры (в момент времени t), T_b – температура термостата, τ_b – характерное время взаимодействия с резервуаром.

В результате рассмотрения разных значений параметра τ_b выбирается наиболее подходящее время взаимодействия с резервуаром в условиях поставленной задачи, с использованием которого система достигает равновесного состояния в более короткие периоды времени по сравнению с другими значениями данного параметра.

При интегрировании уравнений движения также используется схема Верле: (2.18), (2.19).

Для решения поставленной задачи используем следующий алгоритм:

- 1) Расчет по формуле (2.18) новых координат частиц \mathbf{r}_{i}^{n+1} для момента времени $t^{n+1} = t^{n} + \Delta t$, где n номер шага.
- 2) Проверка граничных условий.
- 3) Вычисление значения потенциальной энергии системы U^{n+1} (2.24) частиц и сил \mathbf{F}_i^{n+1} (2.26), действующих на частицы.
- 4) Расчет новых скоростей частиц V_i^{n+1} для момента времени t^{n+1} по выражению (2.19).
- 5) Вычисление коэффициента λ^{n+1} по алгоритму Берендсена (2.27) и масштабирование скоростей.
- 6) Вычисление кинетической энергии системы KE^{n+1} по формуле (2.4).
- 7) Вычисление полной энергии системы E^{n+1} (2.5) для момента t^{n+1} .

Этапы 1) – 7) повторяются на каждом шаге по времени.

С целью слежения за отклонениями энергии системы в работе используется метод, рассмотренный в пункте 2.1, который позволяет обеспечивать контроль над изменением энергии в широком диапазоне ее значений.

Третья глава диссертации состоит из двух частей и посвящена деталям программной реализации в соответствии с выбранными математическими моделями, описанными во второй главе. Программная реализация была выполнена на современных высокопроизводительных вычислительных системах, на ее основе был создан комплекс программ для моделирования установления термодинамического равновесия для систем в различных агрегатных состояниях.

В первой части главы 3 рассматривались методы минимизации компьютерных затрат на вычисления. Уменьшить затраты компьютерного времени, не пренебрегая точностью вычислений, можно, используя периодические граничные условия, радиус ограничения взаимодействия частиц и оптимизируя вычисления сил взаимодействия, которые представляют собой наиболее затратные части алгоритма расчета траекторий.

Использование периодических граничных условий при ограничении расстояния взаимодействия радиусом сферического отсечения заключается в том, что для всех пар частиц вычисляются расстояния между ними, а силы воздействия рассчитываются только для пар атомов, расстояние между которыми меньше радиуса «обрезания» потенциала, что значительно снижает количество операций и соответственно время расчета. Внутрь сферы отсечения включаются молекулы, расположенные как в центральной ячейке, так и в соседних ячейках (рис. 3.1 а).

Алгоритм нахождения расстояния между двумя частицами тоже является весьма затратным, так как приходится для каждой пары частиц выполнять ряд арифметических операций в виде вычисления квадратного корня из суммы квадратов разностей координат, для того чтобы провести сравнение полученного значения с известной константой r_c .

Был предложен и реализован метод геометрического разбиения моделируемой области с учетом периодических условий на границах. Область разбивается на «ящики» кубической формы с тремя измерениями, равными радиусу «обрезания». Тогда если рассматриваемая частица находится в

определенном «ящике», то считается, что на нее могут действовать атомы из этого же «ящика» либо соседних «ящиков». В двумерном случае приходится проводить расчеты всего для 9 таких участков (рис. 3.1 б), в трехмерном – для 27 участков, что сокращает компьютерные затраты на порядки, и тем выше порядок сокращения затрат, чем больше размер системы.

Рис. 3.1. Периодические граничные условия: а – в ячейке 1 моделируемая область, в ячейках 2–9 образы моделируемой области; б – разбиение моделируемой области на кубические «ящики» со стороной, соответствующей радиусу «обрезания» потенциала.

Во второй части главы 3 описывается проблема, заключенная в быстродействии программных комплексов, рассчитанных на решение систем больших размерностей. Решением такой проблемы является использование параллельных вычислений.

В работе разработаны и реализованы алгоритмы параллельных расчетов гибридных вычислительных комплексах моделировании при на установления термодинамического равновесия систем веществ в разных агрегатных состояниях. Параллельная реализация адаптирована ДЛЯ CUDA (Compute Unified Device Architecture применения технологии унифицированная вычислительная архитектура устройств) С учетом эффективного распределения данных.

Модель программирования в CUDA предполагает группирование нитей. Нити объединяются в блоки нитей — одномерные или двумерные сетки нитей, взаимодействующих между собой при помощи разделяемой памяти и точек синхронизации. Программа (ядро) исполняется над сеткой блоков нитей. Группировка блоков в сетки позволяет уйти от ограничений и применить ядро к большему числу нитей за один вызов.

Наиболее вычислительно сложным этапом задачи является подсчет сил взаимодействия и потенциальных энергий частиц системы. В основе параллельного алгоритма лежит модель «ящиков», описанная в первой части главы 3.

Параллелизм на данном этапе состоит в том, что разные «ящики» можно обрабатывать параллельно и независимо друг от друга. Чем больше число обрабатываемых «ящиков», тем полнее получается загрузить GPU работой.

Разработанный параллельный алгоритм формирует сетку блоков для GPU следующим образом. Запускается NUMBOX X × NUMBOX Y блоков NUMBOX Z нитей В каждом, где NUMBOX X, NUMBOX Y, ПО NUMBOX Z – это количество «ящиков» по осям X, Y, Z соответственно. Таким образом, одна нить обрабатывает один «ящик». Перед работой ядра GPU необходимо скопировать координаты частиц и информацию о распределении частиц по «ящикам» в память GPU. По завершении работы взаимодействия и потенциальные энергии полученные силы частиц копируются из памяти GPU в память CPU. Результаты тестирования параллельного алгоритма приведены в таблице 3.1.

Как видно из таблицы 3.1, при увеличении размерности системы увеличивается ускорение, получаемое при использовании параллельного алгоритма. Это ожидаемый результат, объяснение которого состоит в том, что при увеличении числа блоков и нитей, работающих на GPU, лучше получается загрузить ресурсы GPU работой.

Анализ результатов проведения параллельных расчетов на суперкомпьютерах MBC-Экспресс и К-100 подтверждает высокую эффективность вычислительных систем на основе гибридной архитектуры для решения задач молекулярной динамики и перспективность развития данного направления.

Количество Размерность,	Время	Время		
	Dopyopuooti	выполнения	выполнения	Varanauua
	последовательного	параллельного	ускорение,	
Ν	$\kappa_x \times \kappa_y \times \kappa_z$	алгоритма,	алгоритма,	¹ <i>cpu</i> / ¹ <i>gpu</i>
		t_{cpu} , 10^{-2} cek.	t_{gpu} , 10^{-2} cek.	
2 952	6×6×20	12.068	30.223	0.4
4 200	$10 \times 10 \times 10$	16.169	23.497	0.69
20 200	$10 \times 10 \times 50$	84.504	40.627	2.08
181 800	$30 \times 30 \times 50$	795.381	268.71	2.96
901 800	$30 \times 30 \times 250$	3934.534	988.58	3.98
1 261 800	$30 \times 30 \times 350$	5497.431	1229.85	4.47
1 441 800	30×30×400	6326.291	1343.16	4.71
3 505 000	$50 \times 50 \times 350$	15494.465	2604.11	5.95
4 005 000	$50 \times 50 \times 400$	17681.408	2833.56	6.24
4 020 000	$100 \times 100 \times 100$	17260.045	2848.19	6.06
8 020 000	$100 \times 100 \times 200$	34762.332	5172.97	6.72

Таблица 3.1. Результаты тестирования программного комплекса.

В четвертой главе диссертационной работы по аналогии со второй главой, посвященной постановке задач, выделены две части, в которых обсуждаются результаты численного моделирования для разного количества частиц, разных размеров расчетной области и различных параметров алгоритма теплового воздействия.

В первой части главы 4 рассматривается задача для системы частиц аргона. Расчеты заключались в определении времени установления равновесного распределения по скоростям для различного числа частиц и соответствующей температуры.

Расчетная область в форме куба с ребром Lx = Ly = Lz = 10 нм.

Для *N* равномерно распределенных в расчетном кубе атомов аргона фиксировались начальные координаты. Скорости у всех частиц задавались одинаковыми по абсолютной величине ($|V_0| = 50$ м/с) и случайно распределенными по направлениям.

Рис. 4.1 Распределение по квадратам скоростей для количества частиц $N = 10^3$ на момент времени: а – 432 пс; б – 621 пс. Контурная черная линия соответствует линии тренда для данного распределения.

Рис. 4.2. Распределение частиц по квадратам скоростей для $N = 28^3$ на момент времени 432 пс. Контурная черная линия соответствует линии тренда.

Расчеты проводились для количества частиц 10^3 и 28^3 со средним значением шага по времени $\Delta t = 7 \cdot 10^{-3}$ пс в течение 60000 и 90000 шагов, общее время счета составило 432 пс и 621 пс соответственно.

Результаты вычислений для $N = 10^3$ частиц в случаях 60000 и 90000 шагов представлены на рис. 4.1 в виде распределений по скоростям. Как можно

увидеть, система близка к равновесному состоянию уже на момент времени 432 пс (60000 шагов).

Аналогичный результат получается и для другого числа частиц N = 28³ в том же объеме, распределение для которого в случае 60000 шагов представлено на рис. 4.2.

При анализе распределения частиц по скоростям имеется проблема, связанная с наличием частиц с малыми и с очень большими скоростями, что усложняет процедуру определения температуры системы. Это характерно для случая моделирования с не очень большим числом частиц. Для преодоления обозначенной трудности вычисляется функция:

$$\gamma = \ln\left(\frac{2 \cdot n_h}{|V|} \frac{1}{\Delta |V|^2}\right),\tag{4.1}$$

где n_h — количество частиц с квадратами скоростей в интервале $(|V|^2, |V|^2 + \Delta |V|^2);$

|V| – значение скорости по абсолютной величине;

 $\Delta |V|^2$ — интервал квадрата скорости, полученный путем деления максимального значения квадрата скорости на число рассматриваемых в распределении секторов. Максвелловское распределение по квадратам скоростей можно записать в следующем виде

$$n_h(|V|^2, |V|^2 + \Delta |V|^2) = C(T) \exp\left(-\frac{m|V|^2}{2kT}\right) \sqrt{|V|^2} \Delta |V|^2$$
(4.2)

Тогда функция $\gamma(|V|^2)$, определенная выше, отличается от показателя экспоненты в этом распределении лишь константой $\ln(C(T))$, которая не влияет на наклон отрезка, по которому возможно оценить температуру системы.

Таким образом, при достижении системой равновесного распределения по скоростям строится график зависимости функции γ (4.1) от значений квадратов скоростей $|V|^2$. Затем с помощью метода наименьших квадратов на участке с наиболее представительной выборкой определяем линейную зависимость вида

$$\gamma = \beta \cdot \left| V \right|^2,$$

в которой коэффициент *β* определяет наклон линии. Значение температуры вычисляется по этому коэффициенту:

$$T = -\frac{m}{2k_b} \frac{1}{\beta}$$
(4.3)

Расчет температуры системы, определенной таким образом, на момент времени 432 пс (60000-ый шаг) для числа атомов аргона $N = 10^3$, дает значение T = 88 K, а для числа частиц $N = 28^3$ T = 63,1 K.

Другой способ вычисления температуры через приходящуюся на одну частицу среднюю кинетическую энергию:

$$\frac{3}{2}k_bT = KE = \frac{1}{N}\sum_{i=1}^N \frac{m|V_i|^2}{2}, \quad T = \frac{1}{3k_b}\frac{1}{N}\sum_{i=1}^N m|V_i|^2$$
(4.4)

дает следующие результаты:

для $N = 10^3$ T = 87, 2 K, для $N = 28^3$ T = 62 K.

Таким образом, температуры, полученные с помощью метода молекулярной динамики путем усреднения параметров движения классической системы частиц (4.4) и с помощью определения коэффициентов наклона по распределению частиц по скоростям (4.3), близки по своим значениям. Откуда следует, что в рассмотренный момент времени большинство частиц термолизовалось, то есть распределение квадратов скоростей частиц близко к макс велловскому. Однако, профиль распределения при количестве частиц $N = 28^3$ более похож на профиль максвелловского распределения, что говорит о том, что система при $N = 28^3$ более сильно стремится к термодинамическому равновесию.

Во второй части главы 4 рассматривается задача для системы частиц алюминия.

Расчет состоял в определении времени установления равновесного распределения по скоростям для различного числа частиц после достижения желаемой температуры.

В рассматриваемой области формы параллелепипеда для N частиц алюминия в ГЦК решетке фиксировались начальные координаты. Скорости у всех частиц задавались по распределению Максвелла, соответствующему небольшому значению температуры (T = 10 K).

В ходе моделирования температура системы повышалась за счет использования термостата Берендсена. Целью данной работы являлось получить равновесное состояние системы при температуре T = 300 К.

Рис. 4.3. Расчет для количества частиц N = 2952 на момент времени 40 пс при параметре термостата $\tau_b = 1$ пс: а – распределение частиц по квадратам скоростей (контурная черная линия соответствует линии тренда для данного распределения); б – график изменения температуры в процессе моделирования.

Вычисления проводились для расчетной области $6 \times 6 \times 20$ кристаллов алюминия, что соответствует количеству частиц N = 2952, и $10 \times 10 \times 50$ кристаллов, где N = 20200 атомов. Среднее значение шага по времени было $\Delta t = 2 \cdot 10^{-3}$ пс. Изучалось поведение системы при разных временах взаимодействия с резервуаром (разных значениях временного параметра алгоритма Берендсена), рассматривались времена порядка 1 пс и 10 пс. Расчеты

велись в течение 20000 и 40000 шагов, общее время счета составило 40 пс и 80 пс соответственно.

Результаты вычислений для N = 2952 частиц в случае 20000 шагов при параметре термостата $\tau_b = 1$ пс представлены на рис. 4.3 в виде распределения по скоростям и графика изменения температуры в процессе моделирования, при параметре $\tau_b = 10$ пс – на рис. 4.4 соответственно.

Рис. 4.4. Расчет для количества частиц N = 2952 на момент времени 40 пс при параметре термостата $\tau_b = 10$ пс: а – распределение частиц по квадратам скоростей (контурная черная линия соответствует линии тренда для данного распределения); б – график изменения температуры в процессе моделирования.

Рис. 4.5. Расчет для количества частиц N = 2952 на момент времени 80 пс при параметре термостата $\tau_b = 1$ пс: а – распределение частиц по квадратам скоростей (контурная черная линия соответствует линии тренда для данного распределения); б – график изменения температуры в процессе моделирования.

Система находится на переходе в равновесное состояние на момент времени 40 пс, но график температуры имеет большую амплитуду относительно желаемого значения. В случае 40000 шагов были сделаны аналогичные расчеты, которые для параметра термостата $\tau_b = 1$ пс представлены на рис. 4.5. На момент времени 80 пс система близка к равновесному состоянию и колебания значений температуры минимальны – желаемый результат получен. Для параметра

термостата $\tau_b = 10$ пс на момент времени 80 пс исследуемые графики изменились незначительно.

Вычисления для количества частиц N = 20200 показали, что равновесное состояние системы и достижение небольших амплитуд относительно необходимой температуры достигаются при параметре термостата $\tau_b = 1$ пс уже на момент расчета 40 пс, результаты представлены на рис. 4.6 в виде распределения по скоростям и графика изменения температуры в процессе моделирования.

Рис. 4.6. Расчет для количества частиц N = 20200 на момент времени 40 пс при параметре термостата $\tau_b = 1$ пс: а – распределение частиц по квадратам скоростей (контурная черная линия соответствует линии тренда для данного распределения); б – график изменения температуры в процессе моделирования.

Аналогично первой части главы 4 с помощью (4.3) вычисляются значения средних температур, основанные на изучении экспоненциального показателя равновесного распределения. Для числа атомов N = 2952 на момент времени 80 пс (40000-ый шаг) с параметром термостата $\tau_b = 1$ пс получено значение T = 303,5 K, а для числа частиц N = 20200 с параметром термостата $\tau_b = 1$ пс на момент времени 40 пс (2000-ый шаг) T = 305 K.

Также была высчитана температура через приходящуюся на одну частицу среднюю кинетическую энергию по выражениям (4.4). Для числа атомов N = 2952 получено значение T = 302 K, для N = 20200: T = 304 K.

Таким образом, температуры, полученные с помощью метода молекулярной динамики путем усреднения параметров движения классической системы частиц (4.4) и с помощью определения коэффициентов наклона по распределению частиц по скоростям (4.3), близки по своим значениям. Это означает, что в рассмотренный момент времени большинство частиц термолизовалось, то есть распределение квадратов скоростей частиц близко к максвелловскому. Однако, профиль распределения при количестве частиц N = 20200 более похож на профиль максвелловского распределения, что говорит о том, что система при N = 20200 частиц более сильно стремится к термодинамическому равновесию и более быстро, о чем говорит меньшее значение времени счета.

В заключении сформулированы основные результаты диссертационной работы.

Основные результаты работы

- 1) Исследованы алгоритмы и математические модели для молекулярнодинамических расчетов.
- 2) Создана молекулярно-динамическая программа основе на вычислений, позволяющая параллельных рассчитывать характеристики термодинамические веществ методами молекулярной динамики. Алгоритмы и программная реализация адаптированы для использования графических ускорителей.
- 3) Проведено исследование зависимости скорости установления равновесного распределения, структуры и характеристик рассматриваемого вещества от геометрии расчетного объема, количества частиц и температуры.

Список цитируемой литературы

- Allen M.P. Introduction to Molecular Dynamics Simulation // Computational Soft Matter: From Synthetic Polymers to Proteins. John von Neumann Institute for Computing, Julich, NIC Series. – 2004. – Vol. 23. – P. 1–28.
- 2) Lennard-Jones J. E. Wave functions of many-electron atoms // Proc. Camb. Phil. Soc. 1931. Vol. 27. P. 469.
- 3) Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules // Phys. Rev. 1967. Vol. 159. P. 98–103.
- Box G. E. P., Muller M. E. A Note on the Generation of Random Normal Deviates // The Annals of Mathematical Statistics. 1958. Vol. 29, No. 2. P. 610–611.
- 5) Daw M. S. Model of metallic cohesion: The embedded-atom method // Phys. Rev. 1989. Vol. 39, No. 11. P. 7441–7452.
- 6) Zhakhovskii V. V., Inogamov N. A., Petrov Yu. V., Ashitkov S. I., Nishiharaa K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials // Applied Surface Science. – 2009. – Vol. 1255. – P. 9592–9596.
- Berendsen H.J.C., Postma J.P.M., W.F. van Gunsteren et al. Molecular dinamics with coupling to an external bath // J. Chem. Phys. 1984. Vol. 81. P. 3684–3690.

Публикации автора по теме диссертации

 Подрыга В.О. Моделирование процесса установления термодинамического равновесия методом молекулярной динамики // Математическое моделирование. – 2010. – Т. 22, No. 11. – С. 39–48. Podryga V.O. Molecular Dynamics Method for Simulation of

Thermodynamic Equilibrium. // Mathematical Models and Computer Simulations. – 2011. – Vol. 3, No. 3. – P. 381–388. ISSN 2070_0482

- 2) Подрыга В.О. Алгоритм моделирования теплофизических свойств молекулярной металлов методами динамики // XVIII Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов – 2011», секция «Вычислительная кибернетика»: Москва, математика И ΜΓУ имени М. В. Ломоносова, 11-15 апреля 2011 г.: Сб. тезисов. – М.: МАКС Пресс, 2011. – С. 134–136.
- 3) Подрыга В.О. Моделирование процесса установления термодинамического равновесия нагретого металла // Математическое моделирование. 2011. Т. 23, No. 9. С. 3–17.