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Введение

Актуальность темы исследования

Распространение высокочастотных данных о транзакциях, котировках и пото-

ках заявок на электронных рынках привело к кардинальному изменению способов

обработки данных и техник статистического моделирования процессов, происхо-

дящих на финансовых рынках. Динамика рынка на уровне транзакций не может

быть описана только в терминах динамики только цены в ее классическом по-

нимании, также нужно принимать во внимание взаимодействие между заявками

разных типов, приходящими от покупателей и продавцов. Единственная возмож-

ность воспроизводить такое взаимодействие - это моделирование потоков заявок,

приходящих на различные уровни так называемой книги заявок.

В последние годы автоматическая (электронная) торговля в значительной сте-

пени заменила так называемую торговлю «в яме» на рынке акций. Electronic

Communication Network (ECN), такие как Achipelago, Instinet, Brut и Tradebook

- электронные системы осуществления сделок купли-продажи биржевых товаров

захватили большую долю рынка. В отличие от рынков, где маркет-мейкер или

специалист централизованно собирает все заявки на покупку и продажу и пред-

ставляет ликвидность, устанавливая собственные котировки на покупку и прода-

жу, эти электронные платформы аггрегируют все активные заявки на покупку

и продажу в книгу заявок и эти заявки становятся доступными всем участни-

кам рынка. В такой системе рыночные заявки мгновенно исполняются по лучшим
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Таблица 1: Среднее число заявок за 10 сек. и количество изменений цены за день
на самых ликвидных бумагах биржи NYSE

Акция Ср. число заявок за 10 сек. Кол-во изм. цены за день
Citigroup 4469 12499

General Electric 2356 7862
General Motors 1275 9016

ценам, представленным в книге заявок в автоматическом режиме. По мере разви-

тия ECN-площадок развитые фондовые рынки, такие как NYSE, Nasdaq, Tokyo

Stock Exchange, Toronto Stock Exchange, Vancouver Stock Exchange, Euronext (Paris,

Amsterdam, Brussels), London Stock Exchange и Moscow Exchange полностью или

частично перешли на электронную систему торгов.

В то же самое время частота прихода заявок очень сильно возросла и вре-

мя исполнения рыночных заявок на таких электронных рынках снизилось с 25

миллисекунд в 2000 г. до 300 микросекунд в 2014. Как показано в Таблице 1, за

10-секундные интервалы времени по каждому из инструментов приходят тыся-

чи заявок, в результате чего лучшие котировки этих инструментов обновляются

сотни тысяч раз в день, также как и цены сделок.

В результате такого развития информация об эволюции спроса и предложения,

а также цены на рынках акций стала записываться в огромных количествах: эти

данные доступны участникам рынка в режиме реального времени, а исследовате-

лям - в виде высокочастотных баз данных. Анализ такого рода данных представ-

ляется огромным вызовом не только из-за их большого объема и сложной структу-

ры. Эти данные дают нам возможность получить более детальное представление

о сложной динамике процессов, отвечающих за ценообразование ( [22], [55]).

Большие объемы имеющихся данных, наличие статистических закономерно-

стей в данных и механическая природа процесса исполнения заявок делает элек-
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тронной рынок интересным объектом для статистического анализа и стохастиче-

ского моделирования.

На фундаментальном уровне статистический анализ и моделирование высо-

кочастотных данных могут дать представление о взаимосвязях между потоками

заявок, ликвидностью и динамикой цен ( [21], [91], [42]), что может заполнить про-

бел между работами в области анализа рыночной микроструктуры ( [17], [82], [44],

[48], [78], [84]), которые сосредоточены на моделях, описывающих механизмы обра-

зования цены в моделях равновесия, и стохастическими моделями типа «черный

ящик», используемыми в финансовом риск-менеджменте, которые представляют

цену как экзогенный случайный процесс. На уровне приложений модели высоко-

частотных данных дают количественные инструменты для маркет-мейкинга ( [6])

и алгоритмов оптимального исполнения больших заявок ( [4], [16], [81], [3]). Другое

очевидное приложение - это разработка статистических моделей для прогнозиро-

вания краткосрочного поведения рыночных переменных, таких как цена, торговый

объем и потоки заявок.

Исследование высокочастотной динамики рынков также является важным для

риск-менеджмента и финансового регулирования. Даже при том, что горизонты,

традиционно рассматриваемые риск-менеджерами и регуляторами, больше (как

правило, дневные и более), торговые стратегии на разных частотах могут взаимо-

действовать довольно сложным способом, что приводит к возмущениям на разных

временных масштабах - от высокочастотных до менее частотных, что может даже

привести к рыночным сбоям, таким как Flash Crash 2010 ( [25], [62]).

Микроструктурные модели динамики книги заявок являются сейчас популяр-

ной темой для применения стохастических моделей, см., например, [82], [43], [52],

[6], [84]. В работе Конта и коллег [34] предложена непрерывная марковская модель

для описания динамики книги заявок. В работе [34] книга заявок рассматривает-

ся как специальная система массового обслуживания, в которой приходы заявок

6



и отмены существующих заявок единичных объемов моделируются независимы-

ми пуассоновскими процессами. Такой тип систем массового обслуживания мо-

жет быть описан в терминах процессов гибели-размножения, чьи состояния есть

количество акций на данном ценовом уровне, операция рождения соответствует

приходу новой лимитной заявки, а гибель - отмена лимитной заявки либо же ее

сведение в сделку. Процессы гибели-размножения являются хорошо изученными

статистическими моделями, которые могут быть рассмотрены как специальные

примеры более общих двухсторонних процессов риска, известных в теории стра-

хования как процессы риска со случайными премиями. Математическая модель,

представленная в [34], имеет некоторые формальные предположения. С одной сто-

роны, эти предположения дают возможность представить аналитические выра-

жения для некоторых характеристик, связанных с динамикой книги заявок. С

другой стороны, эти предположения являются необходимыми для того, чтобы со-

ответствующая модель имела прикладную значимость. Тем не менее, они имеют

существенные ограничения и нереалистичны с практической точки зрения. Следо-

вательно, необходимо иметь очевидную интегральную характеристику текущего

состояния книги заявок, которая могла бы быть вычислена и изучена без привле-

чения аппарата систем массового обслуживания.

Такая характеристика - процесс дисбаланса потоков заявок OFI - была рас-

смотрена в 2011 году в работе [30], финальная версия которой [31] была опуб-

ликована в 2014 году. Тот же самый процесс независимо был введен и изучался

в [28,76,77] под названием обобщенный процесс цены. Процесс OFI использует всю

доступную информацию о постановке, снятии всех заявок, а также информацию

о сделках, поэтому является более чувствительным к рыночной информации, чем

сам процесс цены в ее классическом понимании. Более подробно этот принцип

будет рассмотрен далее.

В рамках подхода, развитого в данной работе, лежит идея о том, что момен-
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ты событий прихода заявок являются точечным случайным процессом хаоса на

временной оси. Более того, предполагается, что этот точечный процесс является

нестационарным (неоднородным по времени), поскольку изменения книги заявок

в значительной степени подвержены влиянию нестационарных информационных

потоков. Как известно, большинство разумных вероятностных моделей нестаци-

онарных (неоднородных по времени) хаотических процессов являются дважды

стохастическими процессами Пуассона, также называемых процессами Кокса

(см., например, [14,53]). Эти процессы определяются как пуассоновские процессы

со случайными интенсивностями. Обычные процессы Пуассона можно рассмат-

ривать как наилучшие модели для стационарных (однородных по времени) хао-

тических потоков событий. Заметим, что привлекательность процессов Пуассона

как моделей однородного дискретного случайного хаоса обусловлена как мини-

мум двумя причинами. Во-первых, процессы Пуассона являются точечными про-

цессами, такими, что интервалы времени между последовательными событиями

являются независимыми случайными величинами с одним и тем же экспоненци-

альным распределением, а как известно, экспоненциальное распределение обла-

дает максимальной дифференциальной энтропией среди всех абсолютно непре-

рывных распределений с конечным первым моментом, определенных на неотри-

цательной полуоси, в то время как энтропия является естественной и удобной

мерой неопределенности. Во-вторых, точки, образующие пуассоновский процесс,

равномерно распределены вдоль оси времени в том смысле, что для любого ко-

нечного временного интервала [t1, t2], t1 < t2, условное совместное распределение

точек пуассоновского процесса, попадающих в интервал [t1, t2] при условии, что

число таких точек является фиксированным и составляет, скажем, n, совпадает с

совместным распределением порядковых статистик, построенных из независимых

выборок размера n из однородного распределения на отрезке [t1, t2], в то время

как равномерное распределение обладает максимальной дифференциальной эн-
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тропией среди всех абсолютно непрерывных распределений, сосредоточенных на

конечных интервалах, и очень хорошо соответствует традиционному представле-

нию абсолютно непредсказуемой случайной величины (см, например. [14,51]).

Финансовые рынки представляют собой примеры сложных открытых стоха-

стических информационных систем, в которых можно выделить два основных ис-

точника случайности: внутренний и внешний. Внутренний источник случайности

порождает неопределенность, обусловленную различием стратегий очень боль-

шого числа участников рынка. Физическим аналогом такой случайности может

служить хаотическое тепловое движение частиц в замкнутых системах. Внешний

источник случайности – это плохо поддающийся более или менее полному про-

гнозированию поток новостей политического и экономического характера (в том

числе потоки информации с внешних рынков и инструментов), в соответствии с

которыми изменяются интересы и стратегии участников рынка. Эти два источ-

ника случайности будут учитываться при построении процесса дисбаланса потока

заявок и процесса количества заявок как двухсторонних процессов риска, управля-

емых процессом Кокса, то есть процесса Пуассона со случайной интенсивностью.

Как известно, эмпирические (статистические) распределения приращений (ло-

гарифмов) финансовых активов и, в частности, цен акций на сравнительно ко-

ротких временных интервалах являются распределениями с тяжелыми хвостами

с вершиной заметно острее (то есть с более высоким показателем коэффициента

эксцесса), чем у нормальных распределений (островершинные распределения). В

то же время, как было указано в некоторых исследованиях, финансовые данные

обладают свойством фрактальности, то есть, обладают свойством самоподобия на

различных временных горизонтах, см. [80].

Устойчивые процессы Леви были одними из первых моделей, успешно приме-

ненных на практике для объяснения свойства островершинности конечномерных

распределений наблюдаемых процессов на финансовых рынках, ровно как и свой-
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ства их самоподобия. В соответствии с подходом, основанным на классических

предельных теоремах теории ввероятностей, отличные от нормальных устойчивые

процессы Леви могут быть получены как предельные в функциональных предель-

ных теоремах для случайных блужданий только если элементарные скачки этих

блужданий обладают бесконечными дисперсиями. В [33] были доказаны некото-

рые функциональные предельные теоремы диффузионного типа для динамики

книги заявок на ликвидных рынках и было отдельно отмечено, что подход, ис-

пользуемый в статье имеет место только тогда, когда размеры заявок обладают

бесконечными дисперсиями. В свою очередь, последнее возможно только тогда,

когда вероятности прихода заявок со сколь угодно большими объемами являются

строго положительными. К сожалению, последнее условие представляется трудно

выполнимым с практической точки зрения. Таким образом, в рамках классическо-

го подхода, использовавшегося в [80] и [33], использование устойчивых процессов

Леви как адекватных моделей для описания динамики цен финансовых индексов

представляется по крайней мере сомнительным.

В финансовой математике эволюция (логарифмов) цен акций и финансо-

вых индексов на малых временных горизонтах часто моделируются случайны-

ми блужданиями. Самый простой пример такого подхода - это модель Кокса–

Росса-Рубинштейна (см., например, [89]). В то же самое время, наиболее успеш-

ные (адекватные) модели динамики (логарифмов) финансовых индексов на боль-

ших временных горизонтах являются подчиненными винеровскими процессами

(процессами броуновского движения со случайным временем), такие как обоб-

щенные гиперболические процессы, в частности, variance-gamma (VG) процессы

и нормальные\\обратные гауссовские процессы (NIG), см. [89]. Подчиненным ви-

неровским процессам соответствуюте конечномерные распределения, обладающие

свойствами, упомянутыми выше: тяжелые хвосты и островершинность.

В [29, 63] и [51] тяжелые хвосты эмпирических распределений цен индексов
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были объяснены с использованием предельных теорем для сумм со случайным

числом независимых случайных величин как частного случая случайных блужда-

ний со случайными моментами остановки (randomly stopped random walks).

При рассмотрении случайных блужданий схема случайного суммирования яв-

ляется естественным аналогом схемы подчинения более общих случайных процес-

сов. В [51, 66, 67] была предложена модель эволюции неоднородных хаотических

случайных процессов, в частности, динамики цен акций и финансовых индексов,

с помощью случайных блужданий. порожденных обобщенным дважды стохасти-

ческими пуассоновскими процессами (обобщенными процессами Кокса). Дважды

стохастический пуассоновский процесс (также называемый процессом Кокса) -

это случайный точечный процесс вида N1(Λ(t)), где N1(t), t ≥ 0 - однородный

пуассоновский процесс с единичной интенсивностью и случайный процесс Λ(t),

t ≥ 0, является независимым от процесса N1(t) и обладает следующими свой-

ствами: Λ(0) = 0, P(Λ(t) < ∞) = 1 для любого t > 0, траектории путей Λ(t)

не убывают и непрерывны справа. Обобщенный процесс Кокса - это случайная

сумма независимых одинаково распределенных случайных величин, для которого

количество слагаемых следует процессу Кокса. Подобные непрерывные по време-

ни случайные блуждания рассматривались в [54,58,94].

В соответствии с подходом, использовавшимся в [51,66,67], случайные распре-

деление для обобщенного процесса Кокса со элементарными скачками, обладаю-

щими конечными дисперсиями, должны иметь вид дисперсионно-сдвиговых сме-

сей нормальных законов, которые всегда обладают тяжелыми хвостами и остро-

вершинны, если смешивающее распределение невырождено. Кроме того, в [64,65]

было показано, что ненормальные устойчивые законы могут возникать как пре-

дельные распределения для сумм независимых одинаково распределенных слу-

чайных величин с конечными дисперсиями, если количество слагаемых в сумме

случайно, а распределение количества слагаемых сходится к устойчивому закону
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и определено на неотрицательной полуоси. В терминах процессов Кокса послед-

нее условие означает, что конечномерные распределения управляющего процесса

Λ(t) являются асимптотически устойчивыми. В свою очередь, это означает, что

интенсивность потоков заявок существенно нерегулярна, что приводит к хорошо

известному эффекту кластеризации финансовых данных.

Степень изученности и проработанности проблемы

Как уже упоминалось ранее, моделированию различных аспектов динамики

книги заявок посвящены десятки работ. Далее упоминаются только те работы,

которые лежат в русле исследований, которым посвящена диссертация. В рабо-

те [34] для описания динамики книги заявок предложена модель типа марковского

процесса с непрерывным временем. В этой работе книга заявок рассматривается

как специальная система массового обслуживания с независимыми пуассоновски-

ми входящими потоками заявок единичного объема на покупку/продажу и отмену

ранее поступивших заявок. Такие системы массового обслуживания традиционно

анализируются с помощью аппарата процессов рождения-гибели. Математическая

модель книги заявок типа системы массового обслуживания, предложенная в ука-

занной работе, снабжена целым рядом жестких формальных условий. В частно-

сти, интенсивности входящих потоков предполагаются постоянными. Эти условия

слишком ограничительны и нереалистичны с практической точки зрения. В 2011

г. в работе [30], финальная версия которой [31] опубликована в 2014 г., была пред-

ложена удобная интегральная характеристика текущего состояния книги заявок

– процесс дисбаланса потока заявок (order flow imbalance process, OFI), – кото-

рую можно вычислять и анализировать, не используя аппарат теории массового

обслуживания.

Точно такая же формальная модель была независимо предложена и исследо-

вана в работах [77] и [76] под названием процесс обобщенной цены. Процесс OFI
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оказывается существенно более чувствительным к информации о рынке, нежели

сам процесс цены. Это обусловлено, во-первых, тем, что на рассматриваемых вре-

менных масштабах изменения цены являются чрезвычайно редкими событиями

по сравнению с изменениями состояния книги заявок, и во-вторых, тем, что про-

цесс OFI учитывает не только изменения лучших цен покупки и продажи, но и

события, происходящие глубоко внутри книги заявок.

В данной работе показано, что процесс дисбаланса потоков заявок вполне есте-

ственно трактовать как так называемый двусторонний процесс риска – процесс

риска со случайными премиями. При этом в качестве формальной математической

модели последнего предложено использовать специальный обобщенный дважды

стохастический пуассоновский процесс (обобщенный процесс Кокса), что позволя-

ет применить и обобщить аппарат функциональных предельных теорем, имеющих

свою историю развития. В работе [61] были доказаны некоторые функциональные

предельные теоремы для обобщенных процессов Кокса с квадратично интегриру-

емыми управляющими процессами Λ(t). Однако, класс предельных процессов для

обобщенных процессов Кокса, у которых такие управляющие процессы, а скачки

имеют конечную дисперсию, довольно узок, поскольку он, в частности, не может

содержать никаких устойчивых процессов Леви (помимо винеровского процесса).

В книге [59] приведено общее утверждение (следствие VII.3.6) о сходимости супер-

позиций семимартингалов со стационарными приращениями, из которого можно

вывести функциональную предельную теорему для обобщенных процессов Кокса

с управляющими процессами Λ(t), математические ожидания которых удовлетво-

ряют условию Липшица EΛ(t) 6 Ct. Однако в таком случае класс предельных

процессов для обобщенных процессов Кокса, у которых скачки имеют конечную

дисперсию, также не может содержать никаких устойчивых процессов Леви. В ра-

ботах [73] и [74] доказана функциональная предельная теорема для обобщенных

процессов Кокса, у которых скачки имеют конечную дисперсию, а управляющие
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процессы Λ(t) удовлетворяют условию EΛδ(t) 6 Ctδ1 с некоторыми δ, δ1 ∈ (0, 1].

В таком случае класс предельных процессов для обобщенных процессов Кокса, у

которых скачки имеют конечную дисперсию, может содержать устойчивые процес-

сы Леви, что, в частности, хорошо описывает часто наблюдаемую кластеризацию

заявок. Однако в указанных работах рассмотрен только симметричный случай.

Понятие токсичности потоков заявок, рассматриваемое в третьей главе, было

введено в работах [35], [36], после чего получило развитие использования инди-

катора VPIN в качестве метрики оценки токсичности потоков заявок. Однако,

позднее способность индикатора VPIN предсказывать токсичную ликвидность на

финансовых рынках была подвергнута сомнению (см., например, [5]).

Цели и задачи исследования

• разработать модель потоков заявок со случайными интенсивностями, полу-

чить теоретическое и эмпирическое обоснование модели;

• разработать удобный индикатор текущего состояния книги заявок, чувстви-

тельный к информации о потоках всех заявок;

• изучить предельные состояния рассматриваемых процессов для построения

их асимптотических аппроксимаций;

• на основе процесса дисбаланса потоков заявок разработать математическую

модель токсичности потоков заявок, процедуру оценки токсичности потоков

заявок в режиме реального времени, решить задачи прогнозирования ток-

сичной ликвидности и ценовых шоков.

Прикладная значимость:

• риск-менеджмент, финансовое регулирование;
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• маркет-мейкинг;

• оптимальное исполнение заявок (optimal execution).

Положения, выносимые на защиту

Предмет защиты составляют следующие положения:

1. Разработана новая удобная модель эволюции книги заявок; в качестве удоб-

ного индикатора, описывающего динамику потоков заявок, предложен про-

цесс дисбаланса потоков заявок; для описания процесса дисбаланса потоков

заявок предложена математическая модель вида двухсторонних процессов

риска (процессов риска со случайными премиями); предложено мультипли-

кативное представление интенсивностей потоков заявок, что позволило рас-

смотреть процесс дисбаланса потоков заявок как специальный обобщенный

процесс Кокса;

2. Предложенная модель изучена аналитически: получена теорема переноса,

доказаны функциональные предельные теоремы о сходимости процесса дис-

баланса потоков заявок в схеме серий к процессам Леви в пространстве Ско-

рохода, доказаны теоремы о сходимости процессов дисбаланса потоков за-

явок с элементарными скачками, обладающими конечными дисперсиями, к

процессам Леви с распределениями, имеющими вид дисперсионно-сдвиговых

смесей нормальных одномерных распределений, в частности, к обобщенным

гиперболическим процессам Леви;

3. Построена математическая модель токсичности потоков заявок: на основе

аналитической модели процесса дисбаланса потоков заявок формализованы

понятия токсичности потоков заявок; разработаны байесовский и квантиль-

ный показатели токсичности, рассчитываемые на основе параметров, описы-

вающих потоки всех заявок, поступающих на рынок; реализована процедура
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оценки показателя токсичности в режиме реального времени; решены зада-

чи прогнозирования токсичной ликвидности и ценовых шоков с помощью

предложенного показателя токсичности.

Достоверность результатов обеспечивается корректными доказательства-

ми теорем и подробными описаниями алгоритмов и экспериментов, допускающими

воспроизводимость.

Научная новизна диссертации Чертока А.В. заключается в описании мо-

дели потоков заявок с неоднородными интенсивностями, введении процесса дис-

баланса потоков заявок как интегрального показателя книги заявок, а также рас-

смотрении его математической модели в виде обобщенных процессов риска, дока-

зательстве функциональных предельных теорем для процесса дисбаланса потоков

заявок, а также в разработке аналитического показателя токсичности потоков за-

явок на основе информации о потоках всех заявок, поступающих на финансовый

рынок, и экспериментальном исследовании предложенных подходов на примере

важных практических задач. Теоретическая значимость диссертации Чертока А.

В. состоит в том, что предложено теоретическое обоснование адекватности муль-

типликативной модели интенсивности потоков заявок, доказаны теоремы о схо-

димости обобщенных процессов Кокса с элементарными скачками, обладающими

конечными дисперсиями, к процессам Леви с несимметричными распределениями,

имеющими вид дисперсионно-сдвиговых смесей нормальных одномерных распре-

делений, в частности, к обобщенным гиперболическим процессам Леви. Практиче-

ская значимость диссертационной работы состоит в том, что разработанный метод

вычисления показателя токсичности на основе процесса дисбаланса потоков за-

явок позволяет своевременно выявлять токсичную ликвидность и предупреждать

ценовые шоки в режиме реального времени.
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Используемые подходы и методы

В данной работе используются методы многомерного статистического анализа,

прямые вероятностные методы и методы характеристических функций.
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Основные результаты диссертации были представлены на следующих конфе-

ренциях и семинарах:

• XX Международная конференция студентов, аспирантов и молодых ученых

«Ломоносов-2013», г. Москва, 8-13 апреля 2013 года.

• «Достижения и перспективы эконометрических исследований в России»,

г. Казань, 23 июля 2013 г.

• XXI Международная конференция студентов, аспирантов и молодых ученых

«Ломоносов-2014», г. Москва, 7-11 апреля 2014 года.

• XXXII International Seminar on Stability Problems for Stochastic Models,

Trondheim (Norway), June 16 – 21, 2014.

• ICNAAM-2014 (Rhodes Island, Greece, 22-28 September 2014).

• Научная конференция «Тихоновские чтения», г. Москва, 27-31 октября 2014.

• Спецсеминар кафедры Математической Статистики ВМК МГУ
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Публикации
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дованных ВАК, 3 - в тезисах докладов.
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Краткое содержание диссертации

Во введении обосновывается актуальность темы диссертации, формулируется

цель работы, приводится краткая аннотация диссертационной работы по главам.

Указывается научная новизна и положения, выносимые на защиту.

В первой главе вводятся ключевые модели и терминология. В Разделе 1.2 дают-

ся необходимые определения и в условиях, когда интенсивности потоков заявок

остаются постоянными, вводится двухсторонний процесс риска, адаптирующий

определение процесса риска со случайными премиями из теории страховании к

специфике задачи, и доказывается, что он является обобщенным процессом Пуас-

сона. В Разделе 1.3 вводится условный неоднородный процесс дисбаланса потока

заявок (order flow imbalance, OFI), предлагается мультипликативная форма ин-

тенсивностей потоков заявок и, наконец, условие случайной природы внешнего

информационного фона и получен процесс дисбаланса потоков заявок в общем ви-

де (безусловный) как специальный обобщенный дважды стохастический процесс

Пуассона. Также сформулированы предельные теоремы переноса для одномер-

ных распределений процесса дисбаланса потоков заявок в условиях существова-
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ния вторых моментов объемов заявок. Глава завершается эмпирическим анализом

реальных данных.

Вторая глава посвящена функциональным предельным теоремам для процес-

са дисбаланса потоков заявок OFI. В Разделе 2.1 второй главы содержится неко-

торый предварительный материал о пространстве Скорохода и процессах Леви.

В Разделе 2.2 доказывается общая функциональная теорема, устанавливающая

условия сходимости процессов OFI к процессам Леви в пространстве Скорохо-

да в контексте роста интенсивностей потока заявок. Для этих целей расширены

классические результаты, представленные, например, в [59]. В Разделе 2.3 рас-

сматриваются условия сходимости процессов OFI с элементарными скачками (т.е.,

размерами заявок), обладающими конечными дисперсиями, к процессам Леви с

сдвиг-масштабными смесями нормальных одномерных распределений, то есть, к

подчиненным винеровским процессам, в частности, к обобщенным гиперболиче-

ским процессам Леви.

В третьей главе в рамках рассмотренной модели были введены такие понятия,

как мгновенный профиль токсичности, а также байесовский и квантильний пока-

затели токсичности, рассчитываемые на основе параметров, описывающих потоки

всех заявок, поступающих на рынок. Эти показатели рассчитываются для двух

модельных типов потоков заявок, в первом из которых заявки имеют единичный

объем, во втором – объем заявок является случайным и имеющим показатель-

ное распределение. Для последней из двух моделей была проведена валидация на

реальных данных (фьючерс на индекс РТС) и были построены показатели ток-

сичности в режиме реального времени.

В заключении сформулированы основные полученные результаты, выводы из
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проведенных исследований, а также возможные направления для дальнейших ис-

следований.
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Глава 1

Дисбаланс потоков заявок

В данной главе представлена пошаговая процедура построения модели, описываю-

щей динамику потоков заявок на финансовых рынков, а также вводятся ключевые

характеристики потоков заявок, различные свойства которых будут изучаться в

последующих главах. В Разделе 1 даются необходимые определения при усло-

вии, что интенсивности потоков заявок являются постоянными, вводится процесс

дисбаланса количества заявок, соответствующий по структуре понятию процесса

риска со случайными премиями, известного в теории страхования, а также дока-

зывается, что он является специальным обобщённым пуассоновским процессом. В

Разделе 2 вводится условный неоднородный процесс дисбаланса потоков заявок

(order flow imbalance, OFI), предлагаются мультипликативная форма представле-

ния интенсивностей потоков заявок и условие о случайной природе интенсивности

внешнего информационного фона. В завершение получен (безусловный) процесс

дисбаланса потоков заявок в общем виде как специальный обобщённый дважды

стохастический процесс Пуассона. В завершение представляется анализ реальных

данных о потоках заявок на рынке FORTS и проводится проверка гипотез, выдви-

нутых в рамках предложенной модели.
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1.1 Описание модели

1.1.1 Книга заявок

На классических электронных рынках, которые в данный момент принадлежат

к числу наиболее активно развивающихся типов рынка, биржевая цена финансо-

вого инструмента в ее классическом понимании является результирующей, инте-

гральной характеристикой системы торгов, которая описывается динамикой так

называемой книги заявок (limit order book), представляющей из себя список всех

актуальных на данный момент предложений о покупке и продаже инструмента по

различным ценам (см. рис. 1.1). Динамику книги заявок на электронном рынке

определяют три типа заявок:

• лимитная заявка обозначает желание купить (продать) заданное количе-

ство акций по цене не выше (не ниже) заданной, при этом такая заявка

немедленно добавляется в книгу заявок;

• рыночная заявка обозначает желание купить или продать заданное коли-

чество акций по лучшей цене, представленной в книге заявок, после чего

немедленно происходит сделка;

• заявка на отмену обозначает намерение отменить существующую лимитную

заявку, после чего она удаляется из книги заявок.

Разумеется, лимитная заявка может оказаться рыночной, если заявленная в

ней цена позволяет немедленно произвести сведение с одной из лимитных заявок

на противоположной стороне книги заявок. Участники рынка, присылающие ли-

митные ордера, являются поставщиками ликвидности (liquidity providers), а те,

кто присылают рыночные заявки – потребителями ликвидности (liquidity takers).
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Рис. 1.1: Книга заявок в некоторый момент времени. Высота столбиков равна сум-
марному объёму лимитных заявок на соответствующем ценовом уровне (зеленый
– покупки, красный – продажи)

Более формально, рассмотрим прежде динамику книги заявок на дискретной

сетке цен Π = {1, 2, . . . ,M} как процесс с непрерывным временем

book(t) ≡ (vb,va) ≡ (vb1(t), v
b
2(t), ..., v

b
M(t); va1(t), va2(t), ..., vaM(t)),

где vbp(t) (vap(t)) обозначает количество лимитных заявок на покупку (продажу) с

ценой p ∈ Π. Так как в один момент не может существовать заявок на покупку

и продажу по одной цене (иначе они будут сведены), мы должны потребовать,

чтобы min(vbp(t), v
a
p(t)) = 0 для всех p и t.

Лучшая цена на продажу a(t) (лучший аск) определяется как

a(t) = inf{p : vap(t) > 0} ∧ (M + 1),
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лучшая цена на покупку b(t) (лучший бид) определяется как

b(t) = sup{p : vbp(t) > 0} ∨ 0.

При этом процесс цены можно, например, определить как

p(t) =
a(t) + b(t)

2
,

также называемый мидпрайсом, а процесс s(t) = b(t) − a(t) – спредом. Таким

образом, процесс цены p(t) является результатом процесса эволюции книги заявок,

инициированного потоком заявок трех типов.

1.1.2 Динамика книги заявок

Предположим вначале, что поток информации, поступающей извне, фиксирован.

Тогда при фиксированной информации можно считать, что внутренняя случай-

ность является установившимся хаосом. Как показано, например, в [67] и [69],

естественными математическими моделями хаотических потоков являются пуас-

соновские процессы, характеризуемые тем, что интервалы времени между инфор-

мативными событиями являются независимыми одинаково распределенными слу-

чайными величинами с экспоненциальным распределением. Поэтому на первом

этапе при построении рассматриваемой модели потоки заявок моделируются с ис-

пользованием независимых пуассоновских процессов (как это сделано, например,

в работах [34], [32]):

• моменты появления лимитных заявок на покупку (продажу) на ценовой уро-

вень, расположенный на расстоянии i от лучшей котировки противополож-

ного типа, образуют пуассоновский процесс с параметром λ+
i (λ−i ) (эмпири-
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ческие исследования [96] и [21] показывают, что степенной закон

λ±i =
k

iα

является хорошей аппроксимацией);

• моменты появления рыночных заявок на покупку (продажу) образуют пуас-

соновский процесс с параметром µ+(µ−);

• моменты появления заявок на отмену лимитных заявок на покупку (прода-

жу), находящихся на расстоянии i от лучшей котировки противоположного

типа, образуют пуассоновский процесс с интенсивностью θ+
i (θ−i ).

Вначале мы рассматриваем потоки заявок единичного объема, однако позже

все рассуждения могут быть распространены на более общий случай (также см.

[58]). Таким образом, book(t) является цепью Маркова с непрерывным временем с

пространством состояний (Z+)2M и следующими переходами:

vai (t)→ vai (t) + 1 с интенсивностью λ−i−b(t) для i > b(t),

vai (t)→ vai (t)− 1 с интенсивностью θ−i−a(t) для i > a(t),

vai (t)→ vai (t)− 1 с интенсивностью µ+ для i = a(t) > 0.

vbi (t)→ vbi (t) + 1 с интенсивностью λ+
a(t)−i для i < a(t),

vbi (t)→ vbi (t)− 1 с интенсивностью θ+
b(t)−i для i 6 b(t),

vbi (t)→ vbi (t)− 1 с интенсивностью µ− для i = b(t) < M + 1.

Введём следующие независимые пуассоновские процессы:

• L±i (t) : потоки лимитных ордеров с интенсивностями λ±i ;
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• M±(t) : потоки рыночных ордеров с интенсивностями µ+I(va 6= 0) и

µ−I(vb 6= 0);

• C±i (t) : потоки заявок на отмену лимитных ордеров с интенсивностями θ±i ,

а также пуассоновский процесс

N(t) = M+(t) +M−(t) +
M∑
i=1

(L+
i (t) + L−i (t)) +

M∑
i=1

(C+
i (t) + C−i (t)),

описывающий поток всех заявок, поступающих на рынок.

Процессы L±i (t),M±(t), C±i (t) полностью определяют процесс цены p(t) и для

него, вообще говоря, могут быть выписаны соответствующие стохастические диф-

ференциальные уравнения (см. [2]), однако дальнейшая его аналитическая интер-

претация представляется очень сложной или вообще невозможной даже при до-

вольно сильных допущениях о постоянных и независимых интенсивностях потоков

заявок разных типов, что также слабо соотносится с реальностью.

1.2 Процесс дисбаланса количества заявок

В данном разделе мы опишем базовые модели процесса дисбаланса количества за-

явок (как индикатора состояния книги заявок) с его некоторыми важными свой-

ствами. Эти модели необходимы для построения непрерывной модели процесса

дисбаланса потоков заявок. Вначале мы определим условную модель, предполага-

ющую, что интенсивности потоков заявок являются постоянными, а затем расши-

рим эту модель для случайных интенсивностей. В последней части мы предложим

мультипликативную форму случайных интенсивностей.
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1.2.1 Постоянные интенсивности потоков заявок

Текущее состояние книги заявок желательно описать с помощью некоторого про-

стого индикатора. Пример такого индикатора – это мидпрайс p(t). Но этот инди-

катор учитывает только лучшие котировки книги заявок и с теоретической точ-

ки зрения описательных статистик играет роль экстремальной порядковой ста-

тистики, аккумулирующей информацию только о значениях минимального аска

и максимального бида. В то же самое время было бы справедливо учитывать не

только изменения лучших котировок, но и постановку/снятие заявок в глубине

книги заявок, поскольку каждое такое действие оказывает влияние на текущее

распределение сил покупателей и продавцов. Для этих целей мы вводим процесс

дисбаланса количества заявок.

Напомним, что внешний информационный фон пока предполагается неизмен-

ным.

Зафиксируем прежде достаточно небольшой интервал времени [0, t], позволя-

ющий считать, что на таком интервале интенсивности описанных событий посто-

янны. Пусть по-прежнему N(t), t ∈ [0, T ], – пуассоновский процесс, соответству-

ющий всем событиям в книге заявок и имеющий интенсивность

λ = µ+ + µ− +
∑M

i=1
(λ+

i + λ−i ) +
∑M

i=1
(θ+
i + θ−i ).

Представим его как суперпозицию процессов N+(t) и N−(t) с интенсивностями

соответственно

λ+ = µ+ +
∑M

i=1
λ+
i +

∑M

i=1
θ−i

и

λ− = µ− +
∑M

i=1
λ−i +

∑M

i=1
θ+
i .

Таким образом, λ = λ+ +λ−, а процессы N+(t) и N−(t) характеризуют накоплен-
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ную силу покупателей и продавцов соответственно (при этом заметим, что снятие

заявок на стороне продавцов в данном случае увеличивает силу покупателей, и

наоборот) и являются условно независимыми при фиксированном потоке инфор-

мации, поступающем извне за время [0, t].

Определим процесс

NOI(t) = N+(t)−N−(t),

который может быть определён как (условный) процесс дисбаланса количества

заявок. Это определение допускает другую формулировку, которая окажется по-

лезной для дальнейших обобщений моделей с заявки произвольного объёма. А

именно, условным процессом дисбаланса количества заявок NOI(t) мы также мо-

жем назвать процесс, приращения которого на интервале [0, t] ⊆ [0, T ] имеют вид

NOI(t)−NOI(0) =
∑N(t)

j=1
Xj, (1.1)

где X1, X2, . . . – независимые одинаково распределенные величины, такие, что

Xj =


+1 с вероятностью

λ+

λ+ + λ−

−1 с вероятностью
λ−

λ+ + λ−
,

j = 1, 2, . . . (1.2)

причем случайные величины X1, X2, . . . стохастически независимы от процесса

NOI(t) (в этом можно убедиться, непосредственно выписав характеристическую

функцию случайной величины NOI(t) − NOI(0) (это будет сделано позднее в

более общей ситуации, см. Лемму 1.1).

При этом

EXj =
λ+ − λ−

λ+ + λ−
, DXj = 1−

(λ+ − λ−

λ+ + λ−

)2

=
4λ+λ−

(λ+ + λ−)2
,
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так что

E
∑N(t)

j=1
Xj = t(λ+ − λ−),

D
∑N(t)

j=1
Xj = t(λ+ + λ−)

[(λ+ − λ−

λ+ + λ−

)2

+
4λ+λ−

(λ+ + λ−)2

]
= t(λ+ + λ−).

В дальнейшем без ограничения общности будем считать, что NOI(0) = 0. Для

удобства временно будем считать, что T = 1 и будем рассматривать поведение

NOI(1), т.е. приращения процесса NOI за единицу времени.

Если λ = λ+ + λ− очень велико, то есть в единицу времени происходит очень

много информативных событий, то по центральной предельной теореме для пуас-

соновских случайных сумм справедливо приближенное соотношение

P
(
NOI(1) < x

)
≈ Φ

(
x− λ+ + λ−√

λ+ + λ−

)
, x ∈ R (1.3)

где Φ(x) – стандартная нормальная функция распределения

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2dz, x ∈ R.

При этом с учётом результатов работ [70,88] точность аппроксимации (1.3) может

быть оценена как

sup
x∈R

∣∣∣∣P(NOI(1) < x
)
− Φ

(
x− λ+ + λ−√

λ+ + λ−

)∣∣∣∣ 6 0.3031√
λ

, λ = λ+ + λ−.

Теперь вспомним, что выше внешний поток информации считался фиксиро-

ванным. Это предположение, в частности, широко используется в большинстве

работ по моделированию динамики книги заявок и дает возможность использо-

вать аппарат марковских цепей с непрерывным временем, для которых условие

марковости в определенном смысле эквивалентно тому, что распределение вероят-
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ностей интервалов времени между информативными событиями является экспо-

ненциальным. В реальной практике это условие не выполняется, как видно из Рис.

1.2. На этом рисунке приведены гистограмма интервалов времени между событи-

ями, произошедшими в течение всего рабочего дня на фьючерсе на индекс РТС

2013.03.05, и график плотности гамма-распределения с параметром формы 0.3642

и соответствующим параметром масштаба. Это распределение хорошо согласуется

с гистограммой и заметно отличается от экспоненциального.

Рис. 1.2: Гистограмма времён между приходами заявок и плотность гамма-
распределения

С другой стороны, хорошее согласие распределения вероятностей интерва-

лов времени между событиями, заметное на Рис. 1.2, с указанным выше гамма-

распределением подтверждает правильность рассуждений об условной марково-

сти рассматриваемых процессов, поскольку, как известно, получение безусловного

распределения из условного сводится к смешиванию условного распределения по

распределению вероятностей, соответствующему закону распределения парамет-

ра, описывающего фиксированное условие. В то же время гамма-распределение
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может быть представлено в виде смеси экспоненциальных распределений, толь-

ко если его параметр формы не превосходит единицы, см. [46]. В той же работе

показано, что если параметр формы r гамма-распределения, соответствующего

плотности

g(x; r, µ) =
µr

Γ(r)
xr−1e−µx, x > 0,

удовлетворяет условию 0 < r ≤ 1, тогда плотность g(x; r, µ) может быть представ-

лена в виде

g(x; r, µ) =

∫ ∞
0

pµ(z)ze−zx dz, (1.4)

где

pµ(z) =
(z − µ)−rµr

zΓ(1− r)Γ(r)
I(µ ≤ z) (1.5)

– плотность распределения Снедекора–Фишера. В работе [77] можно найти также

результаты статистического анализа эволюции параметра µ модели (1.4)–(1.5) в

течение дня.

Тем не менее, рабочий день, за который накапливались исходные данные для

Рис. 1.2, – это слишком большой интервал времени и интенсивности потоков за-

явок сильно меняются в течение дня, поэтому распределение Снедекора–Фишера

(1.4) это усреднённое статистическое распределение интенсивностей потоков за-

явок, так что практическая ценность этой модели сродни ценности информации о

«средней температуре по больнице».

1.2.2 Случайные интенсивности потоков заявок

Для получения более тонких моделей безусловного распределения величины

NOI(1), в силу непредсказуемости потока внешней информации, следует считать,

что λ+ и λ− – это некоторые конкретные значения случайных величин Λ+ и Λ−. Та-
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ким образом, для безусловного распределения приращения Q(1) «форсированно»

получается модель

P
(
NOI(1) < x

)
≈
∫
R+×R+

Φ

(
x− λ+ + λ−√

λ+ + λ−

)
dP(Λ+ < λ+, Λ− < λ−) =

= EΦ

(
x− Λ+ + Λ−√

Λ+ + Λ−

)
, x ∈ R. (1.6)

Эту модель можно статистически исследовать методом скользящего разделения

смесей (СРС-методом), используя конечные аппроксимации для смеси (1.6):

P
(
NOI(1) < x

)
≈
∑k

j=1
pjΦ
(x− aj

σj

)
. (1.7)

Для этого должны быть оценены параметры k, p1, . . . , pk, a1, . . . , ak, σ1, . . . , σk. В

общем случае распределение NOI(t) меняется с изменением t и, таким образом,

параметры k, p1, . . . , pk, a1, . . . , ak, σ1, . . . , σk зависят от времени и должны оце-

ниваться в «скользящем» режиме, для чего необходимо применять метод сколь-

зящего разделения смесей (СРС-метод), изложенный в [67], где много внимания

уделено применению СРС-метода к декомпозиции волатильности в следующем

ключе.

Обозначив V = Λ+−Λ− и U = Λ+ + Λ−, мы видим, что в рамках модели (1.7)

P
(
(U, V ) = (σ2

j , aj)
)

= pj, j = 1, . . . , k. (1.8)

Кроме того, в этом случае мы можем предположить, что

NOI(1)
d
= X ·

√
U + V (1.9)

где случайная величина X имеет стандартное нормальное распределение я яв-
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ляется независимой от пары (U, V ). Из представления (1.9) следует, что

DNOI(1) = DV + EU =
∑k

j=1
pj(aj − a)2 +

∑k

j=1
pjσ

2
j , (1.10)

где a =
∑k

j=1 pjaj. Первое слагаемое в правой части уравнения (1.10), DV , зависит

только от весов pj и средних aj, которые в действительности обозначают средние

значения трендов компонент смеси (1.7). Кроме того, aj - это среднее изменение

координаты в единицу времени, то есть скорость. Это означает, что DV зависит

только от локальных трендов, тто есть динамической компоненты полной вола-

тильности DNOI(1).

В то же время, второе слагаемое в правой части уравнения (1.10), EU , зависит

только от весов pj и дисперсий (диффузионных компонент) σ2
j . Это означает, что

EU зависит только от локальных дифузионных компонент, и потому является

диффузионной компонентой полной волатильности DNOI(1).

СРС-метод является непараметрическим, потому что методически аналогичен

непараметрическим процедурам ядерного оценивания распределений. Он квази-

непараметрический, потому что выбор нормальных ядер здесь форсирован и обу-

словлен центральной предельной теоремой для пуассоновских случайных сумм.

Но как любой непараметрический метод, этот метод плох тем, что хорош только

для ретроспективного анализа. Для перспективного анализа (например, прогно-

зирования), намного удобнее параметрические модели, к построению которых мы

и переходим.

1.2.3 Мультипликативная форма случайных интенсивно-

стей

Предположим, что

Λ+ = L · α+, Λ− = L · α−,
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где L – неотрицательная случайная величина, имеющая смысл внешнего новостно-

го фона на бирже, а α+ и α− – параметры, описывающие тенденции торгов (пока

для простоты изложения будем считать параметры α+ и α− неслучайными). Ниже

мы представим эмпирические подтверждения этого принципа.

Тогда модель (1.6) примет вид

P
(
NOI(1) < x

)
≈
∫ ∞

0

Φ

(
x− λ(α+ − α−)√

λ(α+ + α−)

)
dP(L < λ), x ∈ R. (1.11)

Заметим, что модель (1.11) – это хорошо известная дисперсионно-сдвиговая

смесь (variance-mean mixture) нормальных законов, в которой смешивание про-

изводится и по параметру сдвига, и по параметру масштаба, но фактически

смесь является однопараметрической. К такому типу смесей относятся, в част-

ности, обобщенные гиперболические законы, включая дисперсионные гамма-

распределения (variance-gamma distributions), скошенные распределения Стьюден-

та, нормальные\\обратные гауссовские распределения, некоторые устойчивые за-

коны, а также многие другие. Методы исследования и использования таких мо-

делей хорошо известны. Позже мы обсудим асимптотические аргументы в пользу

модели (1.6) более детально.

1.3 Процесс дисбаланса потоков заявок

В данном разделе модель, принципиальное устройство которой описано выше, бу-

дет адаптирована с учетом нестационарного и стохастического характера интен-

сивности внешнего информационного потока Λ и параметров α+ и α−, описываю-

щих степень реакции на него покупателей и продавцов.

В действительности интенсивности потоков заявок являются нестационарны-
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ми, поскольку внешний поток информации, определяющий интенсивность этих

событий, сам по себе является нестационарным. В таком случае интенсивности

потоков заявок разных типов, во-первых, не могут являться независимыми, а во-

вторых, определенным образом зависят от некоторого случайного процесса λ(t),

определяющего внешний новостной фон. Для формализации этих идей предполо-

жим, что интенсивности потоков заявок меняются во времени:

µ+ = µ+(t), λ+
i = λ+

i (t), θ+
i = θ+

i (t),

µ− = µ−(t), λ−i = λ−i (t), θ−i = θ−i (t),

i = 1, . . . ,M . Для t > 0 введём положительные функции

λ+(t) = µ+(t) +
∑M

i=1
λ+
i (t) +

∑M

i=1
θ−i (t),

λ−(t) = µ−(t) +
∑M

i=1
λ−i (t) +

∑M

i=1
θ+
i (t),

и введём функции

Λ+(t) =

∫ t

0

λ+(τ)dτ and Λ−(t) =

∫ t

0

λ−(τ)dτ, t > 0. (1.12)

Предположим, что Λ+(∞) = Λ−(∞) =∞.

Пусть N+
1 (t) и N−1 (t) – независимые пуассоновские процессы с единичной ин-

тенсивностью. Обозначим

N+(t) = N+
1

(
Λ+(t)

)
, N−(t) = N−1

(
Λ−(t)

)
.

ПроцессыN+(t) andN−(t) являются неоднородными процессами Пуассона с мгно-

венными интенсивностями λ+(t) и λ−(t) соответственно.

Теперь мы избавимся от предположения о единичном объёме заявок и перей-

36



дём к более общей модели динамики книги заявок, предположив, что заявки мо-

гут иметь произвольные объёмы. Пусть X+
1 , X

+
2 , ... – одинаково распределённые

положительные случайные величины и X−1 , X
−
2 , ... – также одинаково распреде-

лённые положительные случайные величины. Предположим, что для каждого t,

случайные величины X+
1 , X

+
2 , ..., X

−
1 , X

−
2 , ..., N

−
1 (t) и N+

1 (t) независимы. Опреде-

лим процесс

OFI(t) =
∑N+(t)

j=1
X+
j −

∑N−(t)

j=1
X−j . (1.13)

Процесс OFI(t) назовём (условным) процессом дисбаланса потоков заявок.

Этот процесс является интегральной мгновенной характеристикой потоков заявок

(и, как следствие, книги заявок) при наличии идеализированного предположения

о том, что внешний поток информации не является случайным.

Некоторые эмпирические исследования (см., например, [27, 93]) показывают,

что объёмы лимитных заявок в действительности имеют экспоненциальное рас-

пределение, что в рамках модели (1.13) в общем случае распределение независи-

мых случайных величин Xj является асимметричным распределением Лапласа

(конечная смесь экспоненциальных распределений и распределение симметрично

экспоненциальному распределению, определённому на отрицательной полуоси).

Формально процессOFI(t), предложенный в (1.13), совпадает с хорошо извест-

ным в теории страховании процессом риска со стохастическими премиями, по-

ложительная сумма описывает поток страховых премий, а отрицательная – поток

страховых выплат, см., например, [69]. Однако, как это было отмечено в [69], такие

модели вряд ли могут считаться адекватными в страховой практике хотя бы пото-

му, что две компоненты OFI(t) считаются независимыми, хотя в реальной жизни

страховые случаи не могут возникнуть прежде, чем в страховую фирму будет вне-

сена соответствующая страховая премия. Тем не менее как было также отмечено
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в [69], модель (1.13) может быть успешно применена при описании спекулятивной

активности на финансовых рынках. В финансовых приложениях процессы типа

(1.13) описывают динамику баланса покупателей и продавцов и результирующие

риски. Таким образом, в дальнейшем мы будем использовать терминологию, бо-

лее подходящую для финансовых приложений и называть процессы вида (1.13)

процессами дисбаланса или двусторонними процессами риска.

В рассматриваемой ситуации, таким образом, при описании динамики про-

цесса дисбаланса потоков заявок OFI(t) «положительные» и «отрицательные»

компоненты процесса (1.13) не могут считаться независимыми. Рассматривая за-

висимость этих компонент, мы сделаем предположение, которое, с одной стороны,

является очевидным с аналитической точки зрения и, с другой стороны, соответ-

ствует наблюдаемой реальности. А именно, предположим, что мгновенные интен-

сивности λ+(t) и λ−(t) зависят от одного и того же процесса `(t), так что имеют

место соотношения

λ+(t) = a+(t)`(t), λ−(t) = a−(t)`(t) (1.14)

с одной и той же неотрицательной функцией `(t) и некоторыми неотрицательными

функциями a+(t) and a−(t), так что

Λ+(t) =

∫ t

0

a+(τ)`(τ)dτ, Λ−(t) =

∫ t

0

a−(τ)`(τ)dτ.

Обозначим

L(t) =

∫ t

0

`(τ)dτ.

Рассматривая функции a+(t) and a−(t), мы предполагаем, что они достаточно

регулярны, так что выполняются условия теоремы о среднем и для каждого t > 0
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существуют τ+(t) ∈ [0, t] и τ−(t) ∈ [0, t], такие, что

Λ+(t) =

∫ t

0

a+(τ)`(τ)dτ = a+
(
τ+(t)

) ∫ t

0

`(τ)dτ = a+
(
τ+(t)

)
L(t),

Λ−(t) =

∫ t

0

a−(τ)`(τ)dτ = a−
(
τ−(t)

) ∫ t

0

`(τ)dτ = a−
(
τ−(t)

)
L(t).

Заметим, что числа τ+(t) and τ−(t) могут быть определены неоднозначно. Обо-

значим

α+(t) = a+
(
τ+(t)

)
, α−(t) = a−

(
τ−(t)

)
.

Таким образом, аналогично случаю с дискретным временем мы в конце концов

приходим к мультипликативной форме в непрерывной версии

Λ+(t) = α+(t)L(t), Λ−(t) = α−(t)L(t), t > 0. (1.15)

Как мы уже упоминали, ниже будут представлены некоторые эмпирические на-

блюдения, подтверждающие соотношения (1.14) и (1.15).

1.4 Случайные интенсивности.

Обобщённые процессы Кокса и процесс OFI.

Процесс L(t), описанный выше может быть проинтерпретирован как компонента

интенсивности торгов, связанная с ажиотажем, обусловленным внешним инфор-

мационным фоном. В таком случае функции α+(t) and α−(t) описывают степень

реакции покупателей и продавцов на этот новостной фон.

Рассматривая процесс L(t), мы сделаем следующее предположение. Во-первых,

поскольку он описывает активность, вызванную крайне плохо прогнозируемым по-

током неопределённых новостей, довольно было бы правильно считать L(t) слу-
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чайным процессом. Во-вторых, мы будем предполагать, что L(t), как случайный

процес, удовлетворяет следующим свойствам: Λ(0) = 0, P(Λ(t) <∞) = 1 для всех

t > 0, траектории процесса Λ(t) являются неубывающими и непрерывными спра-

ва. Случайные процессы с этими свойствами называются случайными мерами.

Рассмотрим временной интервал [0, T ], достаточно малый для того, чтобы

средние значения параметров распределения объёмов заявок считались известны-

ми на этом интервале. Это предположение не является серьёзным ограничением

с практической точки зрения, поскольку эмпирические исследования демонстри-

руют наличие значимых эффектов памяти у потоков заявок для малых значений

T . В общем случае параметры распределений меняются во времени и представ-

ляется возможным построить модели, описывающие эволюцию этих параметров

в течение торговой сессии.

Итак, мы зафиксируем временной интервал [0, T ] и рассмотрим модель дву-

стороннего процесса риска для процесса дисбаланса потоков заявок в общем виде.

Пусть X+
1 , X

+
2 , ... – одинаково распределённые положительные случайные величи-

ны, соответствующие объёмами приходящих заявок от покупателей, и X−1 , X
−
2 , ...

– одинаково распределённые положительные случайные величины, соответству-

ющие объёмам заявок, приходящих от продавцов. Пусть N+
1 (t) и N−1 (t) – два

стандартных пуассоновских процесса (каждый с единичной интенсивностью).

Пусть L(t) - случайная мера. Предположим, что случайные величины X+
1 , X

+
2 , ...,

X−1 , X
−
2 , ... и случайные процессы N−1 (t), N+

1 (t) и L(t) независимы. Дополнитель-

но будем считать,траектории процессов Λ+(t) = α+(t)L(t) и Λ−(t) = α−(t)L(t)

не убывают. Эти предположения соответствуют тому, что N+(t) = N+
1

(
Λ+(t)

)
и

N−(t) = N−1
(
Λ−(t)

)
являются дважды стохастическими пуассоновскими процес-

сами (процессами Кокса). Процесс

OFI(t) =
∑N+(t)

j=1
X+
j −

∑N−(t)

j=1
X−j (1.16)
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будем называть обобщённым (безусловным) процессом дисбаланса потоков заявок.

Процесс OFI(t), определённый таким образом, соответствую специальному дву-

стороннему процессу риска, чьи положительные и отрицательные компоненты не

являются независимыми: они связаны с одним и тем же процессом L(t), описываю-

щим общую компоненту интенсивности событий о приходе заявок от покупателей

и продавцов..

Данное выше определение предполагает, что процессOFI(t) в некотором смыс-

ле аккумулирует в себе больше информации, чем процесс процесс цены p(t), кото-

рый может быть получен как прореживание процесса OFI(t) - остаются только

те события (а точнее, рыночные заявки), которые приводили к увеличению или

уменьшению мидпрайса. В этом смысле процесс цены, часто фигурирующий в ака-

демических и прикладных исследованиях, является сужением исходного процесса

дисбаланса потоков заявок и может изучаться похожими техниками.

Также легко заметить, что в рамках концепции двухсторонних процессов рис-

ка, процесс дисбаланса количества заявок NOI является частным случаем более

общего процесса дисбаланса потока заявок OFI.

Процесс дисбаланса потоков заявок является намного более чувствительным

индикатором (показателем) текущего состояния книги заявок, поскольку в усло-

виях активной деятельности большого количества высокочастотных торговых си-

стем интервалы времени между последовательными изменениями состояний кни-

ги заявок обычно так малы, что изменения цены (мидпрайса) p(t) по сравнению

с ними являются редкими событиями. Поэтому процесс цены p(t) является на-

много более грубым показателем, характеризующим книгу заявок и дает грубое и

весьма ограниченное описание динамики рынка. Вместе с тем процесс дисбаланса

потоков заявок учитывает не только текущие значения наилучших цен покупки

и продажи, но и влияние событий «в глубине» книги заявок и потому меняется

существенно быстрее и позволяет интерполировать динамику рынка между из-
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менениями цены, в частности, отслеживать ситуации, связанные с токсичностью

потоков заявок, то есть чреватые необоснованными трендами в поведении цены

(см. рис. 1.3).

Рис. 1.3: Динамика лучшей цены покупки, лучшей цены продажи и процесса
дисбаланса потока заявок OFI(t) в течение 1 секунды с момента 10:00:12,730
01.07.2014 (фьючерс на индекс РТС)

В работе [31] с помощью линейной модели

S(t+ ∆)− S(t)

δ
= c

Q(t, t+ ∆)

D(t)
+ ε(t)

было показано, что процесс дисбаланса потока заявок Q(t) имеет сильную связь

с высокочастотными изменениями цены финансового актива S(t), построенной по

ценам сделок, где δ – минимальный шаг цены (тик цены), ε(t) – белый шум и D(t)

– мера глубины книги заявок (количество заявок на лучшем биде/аске). Эмпири-

ческий анализ высокочастотных данных для американских акций подтверждает

наличие линейной связи: коэффициент c оценивается между 0.1 и 1 и оказыва-

ется статистически значим в 98% случаев. Наличие такого рода связи позволяет
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напрямую исследовать свойства процесса дисбаланса потока заявок и соотносить

их со свойствами процесса цены S(t).

Также следует заметить, что предположение о мультипликативности интен-

сивностей согласуется с другими популярными моделями, использующими хоро-

шо известное свойство кластерности интенсивности прихода заявок. Кроме того,

если процесс `(t) существенно меняется во времени или осциллирует, то эти ос-

цилляции дают возможность объяснить феномен кластеризации прихода заявок.

Мультипликативные конструкции также используются при моделировании интен-

сивностей потоков заявок с использованием процессов Хоукса [32,56,57].

Обобзначим характеристические функции случайных величин X+
1 и X−1 как

f+(s) и f−(s) соответственно, s ∈ R.

Лемма 1.1. При выполнении условий для каждого t > 0 OFI(t) имеет обоб-

щённое смешанное пуассоновское распределение. А именно, для каждого t > 0

P
(
OFI(t) < x

)
= P

(∑N(t)

j=1
Xt,j < x

)
, x ∈ R,

где N(t) = N1

(
Λ(t)

)
, Λ(t) =

(
α+(t) +α−(t)

)
L(t), N1(t) - стандартный пуассонов-

ский процесс, независимый от процесса L(t) и Xt,1, Xt,2, . . . - одинаково распреде-

лённые случайные величины с общей характеристической функцией

ft(s) ≡ EeisXt,1 =
α+(t)f+(s)

α+(t) + α−(t)
+

α−(t)f−(−s)
α+(t) + α−(t)

, s ∈ R, (1.17)

кроме того, для каждого t > 0 случайные величины N1(t),Λ(t), Xt,1, Xt,2, . . . яв-

ляются независимыми.

Доказательство. В силу независимости процессов N+
1 (t), N−1 (t), L(t)

P
(
OFI(t) < x

)
= P

(∑N+(t)

j=1
X+
j −

∑N−(t)

j=1
X−j < x

)
=
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=

∫ ∞
0

P

(∑N+
1 (α+(t)`)

j=1
X+
j −

∑N−
1 (α−(t)`)

j=1
X−j < x

)
dP
(
L(t) < `

)
. (1.18)

Рассмотрим характеристическую функцию процесса дисбаланса потока заявок

под знаком вероятности в подынтегральном выражении:

E exp

{
is

(∑N+
1 (α+(t)`)

j=1
X+
j −

∑N−
1 (α−(t)`)

j=1
X−j

)}
=

= exp
{
α+(t)`

(
f+t (s)− 1

)}
· exp

{
α−(t)`

(
f−t (−s)− 1

)}
=

= exp

{(
α+(t) + α−(t)

)
`

(
α+(t)f+t (s)

α+(t) + α−(t)
+

α−(t)f−t (−s)
α+(t) + α−(t)

− 1

)}
,

то есть для каждого фиксированного ` > 0

∑N+
1 (α+(t)`)

j=1
X+
j −

∑N−
1 (α−(t)`)

j=1
X−j

d
=
∑N1((α+(t)+α−(t))`)

j=1
Xt,j,

где Xt,1, Xt,2, . . . - независимые случайные величины с общей характеристической

функцией (1.17), независимые от стандартного пуассоновского процесса N1(t).

Следовательно, используя (1.18), для каждого x ∈ R получаем

P
(
OFI(t) < x

)
=

∫ ∞
0

P

(∑N+
1 ((α+(t)+α−(t))`)

j=1
Xt,j < x

)
dP
(
L(t) < `

)
=

= P

(∑N(t)

j=1
Xt,j < x

)
.

Лемма доказана.

Если бы функции α+(t) и α−(t) были постоянными, что может быть достигну-

то, когда интервал [0, t] достаточно мал, тогда распределения Xt,j не зависят от t

и в соответствии с Леммой 1.1 процесс дисбаланса потока заявок OFI(t) может

быть рассмотрен как обычный обобщённый процесс Кокса.
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Легко видеть, что случайная величина Xt,1 – это рандомизация:

Xt,1 =


X+

1 с вероятностью
r(t)

r(t) + 1
,

−X−1 с вероятностью
1

r(t) + 1

где r(t) = α+(t)/α−(t), так что

EXt,1 =
r(t)EX+

1

r(t) + 1
− EX−1
r(t) + 1

,

DXt,1 =
r(t)E(X+

1 )2 + E(X−1 )2

r(t) + 1
−
(
r(t)EX+

1 + EX−1
)2(

r(t) + 1
)2 .

Можно заключить, что величина r(t) в значительной степени определяет мгно-

венное поведение процесса OFI. В то же время, из предположений о мультипли-

кативности для достаточно малых значений t следует

r(t) =
α+(t)

α−(t)
≈ λ+(t)

λ−(t)
.

На практике это означает, что для оценки ненаблюдаемого процесса r(t), ха-

рактеризующего мгновенный дисбаланс между силами покупателей и продавцов

нам достаточно оценивать отношение количества заявок, пришедших от покупа-

телей и продавцов в единицу времени. Определим процесс r(t) как процесс дисба-

ланса интенсивностей потоков заявок.
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1.5 Асимптотические аппроксимации

распределения процесса дисбаланса потоков

заявок

Для того, чтобы рассмотреть асимптотические конструкции, которые позволят

формализовать сценарий бесконечного возрастания интенсивностей потоков за-

явок и рассмотреть асимптотические ("heavy-traffic") ыаппроксимации одномер-

ных распределений процесса OFI, зафиксируем момент времени t и рассмотрим

вспомогательный параметр n. Всюду в дальнейшем предполагается сходимость

при n→∞, если не указано иное. Таким образом, на основе Леммы 1.1 рассмот-

рим последовательность обобщённых процессов Кокса в виде

Qn(t) =
∑N

(n)
1 (Λn(t))

i=1
Xn,i, t > 0, (1.19)

где {N (n)
1 (t), t > 0}n>1 – это последовательность пуассоновских процессов с

единичными интенсивностями; для каждого n = 1, 2, ... случайные величины

Xn,1, Xn,2, ... одинаково распределены; для каждого n > 1 случайные величины

Xn,1, Xn,2, ... и процессы N
(n)
1 (t), t > 0, являются независимыми; для каждого

n = 1, 2, ... процессы Λn(t), t > 0, являются управляющими, то есть неубывающи-

ми положительными процессами Леви, независимыми от процесса

Zn(t) =
∑N

(n)
1 (t)

i=1
Xn,i, t > 0, (1.20)

и такими, что Λn(0) = 0.

Всюду в дальнейшем для определённости мы полагаем
∑0

i=1 = 0. В терминах

предыдущих разделов Zn(t) является условным однородным процессом OFI.

Ниже мы покажем, что что рассуждения, приведённые в [68] и [72] для симмет-
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ричного случая могут быть с незначительными изменениями обобщены на случай

предельных процессов с несимметричными функциями распределения. Более того,

с помощью этого подхода мы получим асимптотические островершинные распре-

деления с тяжёлыми хвостами даже в случае, когда дисперсии размеров заявок

ограничены.

Поскольку везде, где это предполагается, параметр t остаётся зафиксирован-

ным, для простоты мы будем писать Qn, Nn, Λn и Xn,j вместо Qn(t), Nn(t), Λn(t)

и X(n)
t,j соответственно.

Нам потребуется несколько вспомогательных утверждений из теории случай-

ного суммирования.

Пусть {ξn,j}j>1, n = 1, 2, . . . – двумерный массив построчно одинаково распре-

делённых случайных величин. Пусть {Nn}n>1 – последовательность целочислен-

ных неотрицательных случайных величин, таких. что для каждого n > 1 случай-

ные величины Nn, ξn,1, ξn,2, . . . являются независимыми. Обозначим

Sn,k = ξn,1 + . . .+ ξn,k.

Как было показано в [68, 72], сдвиг-масштабные смеси нормальных законов

являются идентифицируемыми, поскольку при каждом фиксированном µ ∈ R

and σ > 0 однопараметрическое семейство распределений
{

Φ
(
(x − µz)/σ

√
z
)

:

z > 0
}

является аддитивно-замкнутым. В [68] было доказано следующее общее

утверждение (см. также [72]).

Лемма 1.2. Предположим, что существует последовательность {kn}n>1 на-

туральных чисел и конечные числа µ ∈ R и σ > 0 такие, что

P
(
Sn,kn < x

)
=⇒ Φ

(x− µ
σ

)
. (1.21)
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Предположим, что Nn → ∞ по вероятности. Тогда распределение случайных

сумм слабо сходится к некоторой функции F (x) :

P
(
Sn,Nn

< x
)

=⇒ F (x),

тогда и только тогда, когда существует фнукция распределения A(x) такая,

что A(0) = 0,

F (x) =

∞∫
0

Φ
(x− µz
σ
√
z

)
dA(z), (1.22)

и

P(Nn < xkn) =⇒ A(x). (1.23)

Условие 1.21 выполнено в следующем достаточно общем случае. Предположим,

что случайные величины ξn,j обладают конечными дисперсиями. Также предпо-

ложим, что ξn,j представимы в виде

ξn,j = ξ∗n,j + µn,

где µn ∈ R и ξ∗n,j является случайной величиной, для которой выполняется

Eξ∗n,j = 0, Dξ∗n,j = σ2
n < ∞, так что Eξn,1 = µn и Dξn,1 = σ2

n. Предположим,

что µnkn → µ и knσ2
n → σ2 as n → ∞. Тогда в силу хорошо известного результа-

та о необходимых и достаточных условиях нормальной сходимости распределений

сумм независимых случайных величин с конечными дисперсиями в предельной

схеме двумерного массива (см., например, [50]), мы можем видеть, что (6) вы-

полнено тогда и только тогда, когда выполнено условие Линдеберга: для любого

ε > 0

lim
n→∞

knE(ξ∗n,1)
2I(|ξ∗n,1| > ε) = 0,

(здесь I(B) – индикатор множества B).
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Лемма 1.3. Пусть Nn = N
(n)
1 (Λn), n > 1, где {N (n)

1 (t), t > 0}, n = 1, 2, . . .

являются стандартными пуассоновскими процессами и Λn, n = 1, 2, . . . – по-

ложительные случайные величины такие, что для каждого n > 1 случайная

величина Λn является независимой от процесса N (n)
1 (t). Тогда

P(Nn < knx) =⇒ A(x)

для некоторой бесконечно возрастающей последовательности kn вещественных

чисел и некоторой функции распределения A(x) тогда и только тогда, когда

P(Λn < knx) =⇒ A(x).

Доказательство см. в [51].

Из Лемм 1.2 и 1.3 следует

Теорема 1.1. Предположим, что существует бесконечно возрастающая по-

следовательность {kn}n>1 натуральных чисел и конечные числа µ ∈ R и σ > 0

такие, что случайные объёмы заявок Xn,j удовлетворяют условию

P(Xn,1 + . . .+Xn,kn < x) =⇒ Φ
(x− µ

σ

)
.

Сходимость

P
(
OFIn < x

)
=⇒ F (x) (1.24)

с некоторой функцией распределения F (x) имеет место тогда и только тогда,

когда существует функция распределения A(x) такая, что A(0) = 0, функция
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распределения F (x) представима в виде (1.21) и

P(Λn < xkn) =⇒ A(x). (1.25)

1.6 Анализ реальных данных

1.6.1 Описание данных

Рассматриваются данные о потоках всех заявок (лимитных, рыночных и заявок

на отмену) на первые d = 5 уровней книги заявок фьючерса на индекс РТС.

Эти данные дают доступ к самой детальной информации о рыночных торгах, в

отличие от данных о сделках и котировках (TAQ, Trades and Quotes), которые

часто используются для анализа высокочастотных данных и состоящих из цен

и объёмов сделок (что соответствует только рыночным заявкам в потоке всех

заявок), а также информации о цене и объёме лучших котировок на покупку и

продажу (т. е. только первый уровень книги заявок) с проставленными моментами

времени. Мы не рассматриваем первые и последние 5 минут торгов (с 10:00 до

10:05 и с 18:40 до 18:45), поскольку эти периоды характеризуются аномальными

всплесками волатильности и слабо описываются в рамках предложенной модели.

В Таблице 1.1 приведён пример данных о потоке заявок для фьючерса на ин-

декс РТС - самого ликвидного инструмента фьючерсного рынка Московской Бир-

жи - и о том, как выглядел срез книги заявок на первые пять уровней после при-

хода соответствующей заявки. Заметим, что на рынке FORTS присутствует всего

два типа заявок: лимитные (L) и заявки на отмену (C), а механизм рыночных

заявок участники рынка реализуют самостоятельно (отправляя лимитные заявки

с ценами, гарантирующими их моментальное исполнение). Тем не менее имеется
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Таблица 1.1: Описание формата данных о потоках всех заявок (фьючерс на индекс
РТС).

Time T Dir Price Vol b1 a1 vb1 va1 vb2 va2 vb3 va3 vb4 va4 vb5 va5
10:02:36.444 L B 130020 2 130040 130050 2 4 22 23 54 22 81 31 759 20
10:02:36.445 L S 130070 1 130040 130050 2 4 22 23 55 22 81 31 759 20
10:02:36.465 C B 130040 1 130040 130050 1 4 22 23 55 22 81 31 759 20
10:02:36.473 L B 130050 3 130040 130050 1 1 22 23 55 22 81 31 759 20

возможность оценить параметры потоков рыночных заявок в рамках предлагае-

мой модели, рассматривая для этого потоки лимитных заявок, которые приводили

к сделкам.

Для тестирования некоторых из вышеизложенных концепций были выбраны

высокочастотные данные для самого ликвидного инструмента фьючерсного рынка

биржи ММВБ-РТС – фьючерса на индекс РТС. Биржа распространяет информа-

цию о полном потоке обезличенных заявок участников рынка, что, в частности,

позволяет провести анализ процессов N+(t) и N−(t) в рамках описанной модели

процесса дисбаланса потока заявок.

Для анализа были выбраны данные за первые три часа торгов данным ин-

струментом за дневную сессию 11 ноября 2012 года, график цены, построенный

по сделкам, изображен на Рис. 1.4.

1.6.2 Оценка параметров

В таблицах ниже приведены оценки на интенсивности (первая таблица) и средние

объёмы заявок (вторая таблица) за 20-секундные интервалы в различные моменты

времени в течение дня.
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Рис. 1.4: График цены.

Таблица 1.2: Оценки параметров, связанных с интенсивностями потоков заявок.

Время Q nµ nλ1 nλ2 nλ3 nλ4 nλ5 nθ1 nθ2 nθ3 nθ4 nθ5
10:10:00.049 9 20 15 32 18 29 8 27 12 26 10 9
10:30:00.061 10 9 2 12 16 5 4 3 12 9 5 2
13:00:00.017 19 20 15 32 18 29 8 27 12 26 10 9
16:00:00.020 12 20 38 113 46 11 14 17 60 35 18 15
18:30:00.021 6 31 63 76 25 18 33 57 44 17 12 14

При работе с реальными данными имеется возможность наблюдать лишь

усреднённые интенсивности

λ+
∗ (t, h) =

1

h

∫ t

t−h
λ+(τ)dτ и λ−∗ (t, h) =

1

h

∫ t

t−h
λ−(τ)dτ

для различных h. На Рис. 1.5 изображены графики мгновенных интенсивностей

λ+
∗ (t, h) и λ−∗ (t, h), вычисленных как количество заявок соответствующего типа за

последнюю минуту (h = 1 минута). Для лучшей визуализации вместо λ−∗ (t, h) на

этом рисунке отображён −λ−∗ (t, h). Можно видеть, что её график является почти
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Таблица 1.3: Оценки параметров, связанных с объёмами заявок.

Время V µ V λ1 V λ2 V λ3 V λ4 V λ5 V θ1 V θ2 V θ3 V θ4 V θ5

10:10:00.049 4.66 4.24 2.86 2.81 3.88 6.22 3.00 2.75 3.31 4.46 5.27
10:30:00.061 4.43 3.93 2.71 3.17 3.68 4.15 3.08 3.36 3.78 4.16 3.23
13:00:00.017 4.08 4.02 2.90 2.39 3.05 3.48 2.81 2.56 2.46 4.04 3.78
16:00:00.020 3.02 2.72 2.08 2.28 2.57 2.14 2.49 2.01 2.05 2.11 2.12
18:30:00.021 3.73 3.71 2.48 2.67 3.17 5.75 2.80 3.23 2.76 3.52 4.90

зеркальным отражением графика λ+
∗ (t, h) (т.е. эти графики являются почти сим-

метричными относительно оси x). Этот график подтверждает мультипликативное

представление интенсивностей (1.14) с `(t), представляющей из себя реализован-

ную траекторию мгновенной интенсивности внешнего информационного потока.

В таком контексте процесс `(t) может быть представлен как фактор общего ажио-

тажа на рынке, влияющего на интенсивностей как покупателей, так и продавцов.

Рис. 1.5: Графики мгновенных интенсивностей потоков заявок покупателей λ+∗ (t) (сплошная линия) и продавцов λ−∗ (t) (пунк-
тирная линия), размер скользящего окна w = 60 сек.

На Рис. 1.6 изображены графики тех же процессов, но совмещенные в положи-

тельной полуплоскости. Наблюдаемые расхождения графиков означают локальное

53



преобладание покупателей над продавцами (λ+
∗ (t) > λ−∗ (t)) или продавцов над по-

купателями (λ−∗ (t) > λ+
∗ (t)), согласованные же их падение или рост соответствуют

общему падению или росту интенсивности торгов без особенной борьбы между по-

купателями и продавцами, и, как следствие, изменений цены.

Рис. 1.6: Графики мгновенных интенсивностей потоков заявок покупателей λ+∗ (t) (сплошная линия) и продавцов λ−∗ (t) (пунк-
тирная линия), размер скользящего окна w = 60 сек.

1.6.3 Свойства потоков заявок

Прежде всего заметим, что эмпирические статистические свойства интенсивностей

λ+
∗ (t, h) и λ−∗ (t, h) существенно различаются для разных значений h, поскольку на

разных временных горизонтах рыночная микроструктура подвержена влиянию

разных типов участников рынка (высокочастотные трейдеры для h < 60 сек,

внутридневные трейдеры для горизонта минут и часов и классические инвесторы

для больших значений h).
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Таблица 1.4: Оценки и статистики, связанные с α∗(t, h)

stat h = 1 сек h = 2 сек h = 4 сек h = 8 сек h = 16 сек h = 32 сек h = 64 сек
E(α) 2.262607 3.003977 3.784542 4.548348 5.293362 6.026013 6.754775
D(α) 0.989517 0.932258 0.832570 0.744913 0.671429 0.611302 0.555113
KS 0.000000 0.214000 0.584200 0.694200 0.388300 0.434700 0.685700
SW 0.028320 0.004415 0.010580 0.010950

Свойство мультипликативности

Рассмотрим процесс дисбаланса с усреднёнными интенсивностями

r∗(t, h) =
1

h

∫ t

t−h
r∗(τ)dτ

и процессы

α∗(t, h) = ln
√
λ+
∗ (t, h) ∗ λ−∗ (t, h),

β∗(t, h) = ln

√
λ+
∗ (t, h)

λ−∗ (t, h)
=

1

2
ln r∗(t, h).

Мы используем тесты Колмогорова-Смирнова (KS) и Шапиро-Вилкас (SW)

для тестирования соответствия этих процессов нормальному распределению.

В Таблице 1.4 представлены результаты расчёта различных характеристик,

связанных с эмпирическим наблюдениями α∗(t, h) при разных значениях h. В

первой и второй строках таблицы представлены оценки на матожидание и дис-

персию α∗(t, h). В следующих строках представлены значения p-статистик с 5%-

уровнем значимости для тестов на соответствие нормальному распределению -

тест Колмогорова-Смирнова (KS, третья строка) и Шапиро-Уилка (SW, четвёр-

тая строка).

Аналогичные расчёты для β∗(t, h) представлены в Таблице 1.5.
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Таблица 1.5: Оценки и статистики, связанные с β∗(t, h)

stat h = 1 сек h = 2 сек h = 4 сек h = 8 сек h = 16 сек h = 32 сек h = 64 сек
E(β) -0.001902 -0.001567 -0.001858 -0.001499 -0.001156 -0.000612 -0.001030
D(β) 0.314539 0.238152 0.168382 0.120034 0.086369 0.062167 0.043387
KS 0.000000 0.000000 0.000144 0.290600 0.500900 0.782200 0.670900
SW 0.000000 0.000019 0.071840 0.148700

Таким образом, установлена лог-нормальность r+
∗ (t, h) для h > 32 сек. Также

обнаружено, что r∗(t, h) не обладает значимым автокорреляционным свойством

для любых h, тогда как α∗(t, h) обладает значимой автокорреляцией (> 0.1) и име-

ет нормальное распределение для размера скользящего окна h > 8 сек. Эти эмпи-

рические свойства также подтверждают адекватность мультипликативной формы

представления интенсивностей заявок, предложенной в данном разделе.

На Рис. 1.7 изображен график процесса r(t), из которого хорошо видно преоб-

ладение покупателей над продавцами, что отразилось в поведении цены на про-

тяжении наблюдаемого периода. Другой особенностью графика является наличие

уровня поддержки r = 0.6, что может означать наличие крупного покупателя, ко-

торый сдерживал натиск продавцов при достижении данного уровня дисбаланса

сил (это также согласуется с поведением цены в эти моменты времени).

Корреляции интенсивностей

Наблюдаются существенные корреляции между значениями интенсивностей ато-

марных потоков заявок (см Рис. 1.8), что ещё раз подтверждает идею зависимости

каждого из потоков от некоторого общего фактора.

Распределение количества заявок

Разобьём торговую сессию на непересекающиеся 15-секундные интервалы вре-

мени. На Рис. 1.9 изображены гистограммы количества заявок от покупателей

(слева) и продавцов (справа) за 15-секундные интервалы времени. Легко видеть,
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Рис. 1.7: Отношение мгновенных интенсивностей покупателей и продавцов r(t) =
λ+(t)
λ−(t) , размер скользящего окна h = 60 сек.

Рис. 1.8: Корреляции интенсивностей.

что эти гистограммы неплохо аппроксимируются графиком плотности гамма-

распределения с соответствующими параметрами. Это является хорошим свиде-
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тельством в пользу выбора процессов Кокса для описания соответствующих счита-

ющих процессов. Обоснование такого хорошего соответствия даётся в следующей

главе о предельных функциональных теоремах для процесса OFI: если ожидае-

мая интенсивность потоков заявок велика, тогда асимптотическое распределение

накопленной интенсивности совпадает со смешанным пуассоновским.

Рис. 1.9: Гистограмма количества заявок на покупку (слева) и продажу (сле-
ва) в течение 15-секундных интервалов, фьючерс на индекс РТС, дневная сессия
2014.07.01).
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Глава 2

Функциональные предельные

теоремы для процесса

дисбаланса потоков заявок

В работе [74] были доказаны некоторые предельные функциональные теоремы,

устанавливающие сходимость случайных блужданий, порождённых обобщённы-

ми процессами Кокса со скачками, обладающими конечными дисперсиями, к про-

цессам Леви с симметричными распределениями, включая симметричные стро-

го устойчивые процессы Леви. В данной главе мы расширим эти результаты на

несимметричный случай и применим их для описания динамики процесса дисба-

ланса потока заявок, являющегося интегральной характеристикой динамики кни-

ги заявок.

Функциональные предельные теоремы устанавливают вполне естественную

связь между случайными блужданиями и подчинёнными винеровскими процес-

сами. Операция подчинения даёт хорошее объяснение наличию тяжёлых хво-

стов распределений приращений (логарифмов) цен акций и финансовых индек-
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сов. Функциональные предельные теоремы для обобщённых процессов Кокса до-

казаны в [74] и устанавливают связь между формальными микроструктурными

моделями, имеющими форму непрерывных случайных блужданий, порождённых

обобщёнными процессами Кокса и популярным макромоделями подчинённых ви-

неровских процессов, включающих в себя обобщённые гиперболические процессы,

variance-gamma процессы и т.д. Практическая значимость таких моделей обуслов-

лена случайной природой интенсивностей хаотических потоков информативных

событий в больших информационных финансовых системах и, в частности, при

описании деятельности высокочастотных торговых систем. Использование высо-

кочастотных финансовых данных, доступных благодаря электронным системам

торговли, даёт возможным верифицировать модели, упомянутые выше и связать

их с процессом образования цены, являющейся результатом эволюции книги за-

явок.

В данной главе представлено дальнейшее развитие моделей и техник, предло-

женных в работах [77], [76], [28]. Предлагается удобная и достаточно реалистичная

модель для процесса дисбаланса потока заявок на основе двухсторонних процессов

риска. Для этой задачи мы используем подходы, предложенные в [74].

Таким образом, материал данной главы посвящён функциональным предель-

ным теоремам для процесса дисбаланса потоков заявок OFI. Раздел 2.1 содержит

некоторый предварительный материал о пространстве Скорохода и процессах Ле-

ви. В Разделе 2.2 доказывается общая функциональная теорема, устанавливающая

условия сходимости процессов OFI к процессам Леви в пространстве Скорохода в

контексте роста интенсивностей потока заявок. Для этих целей мы немного рас-

ширяем классические результаты, представленные, например, в [59]. В Разделе 2.3

мы рассматриваем условия сходимости процессов OFI с элементарными скачка-

ми (т.е., размерами заявок), обладающими конечными дисперсиями, к процессам

Леви с сдвиг-масштабными смесями нормальных одномерных распределений, то
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есть, к подчинённым винеровским процессам, в частности, к обобщённым гипер-

болическим процессам Леви.

Условия, приведённые выше, дают возможность использовать хорошо разви-

тый аналитический аппарат обобщённых процессов Кокса для изучения асимпто-

тического поведения процесса OFI при росте интенсивности потоков заявок. Это

даёт возможность описать возможные асимптотические аппроксимации процесса

дисбаланса потока заявок OFI. Для этого нам потребуются некоторые вспомога-

тельные определения и результаты.

2.1 Пространство Скорохода. Процессы Леви.

Пусть D = D[0, 1] – пространство вещественных функций, определённых на ин-

тервале [0, 1], непрерывных справа и имеющих конечный предел слева в каждой

точке.

Пусть F - класс строго возрастающих отображений отрезка [0, 1] на себя. Пусть

f - неубывающая функция, определённая на отрезке [0, 1] и f(0) = 0, f(1) = 1.

Определим

‖f‖ = sup
s6=t

∣∣log
[(
f(t)− f(s)

)
/(t− s)

]∣∣
Если ‖f‖ <∞, тогда функция f является непрерывной и строго возрастающей

и, таким образом, принадлежит F .

Определим расстояние d0(x, y) на множестве D[0, 1] как наибольшую нижнюю

границу множества положительных чисел ε, для которых класс F содержит функ-

цию f , такую что ‖f‖ 6 ε и supt |x(t)− y(f(t))| 6 ε.

Пространство D[0, 1] является полным относительно расстояния d0. Метриче-

ское пространство D = (D[0, 1], d0) называется пространством Скорохода. Мы

будем рассматривать стохастические процессы как D-измеримые случайные вели-
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чины.

Пусть X,X1, X2, ... являются D-измеримыми случайными величинами. Пусть

TX - подмножество отрезка [0, 1], такое что 0 ∈ TX , 1 ∈ TX и если 0 < t < 1, то t ∈

TX тогда и только тогда, когда P
(
X(t) 6= X(t−)

)
= 0. Нижеследующая теорема

устанавливает достаточные условия для слабой сходимости случайного процесса

в D (обозначаемой далее как =⇒ и рассматриваемой в пределе при n→∞).

Теорема 2.1. Пусть
(
Xn(t1), ..., Xn(tk)

)
=⇒

(
X(t1), ..., X(tk)

)
для любого

натурального k и t1, ..., tk принадлежат TX . Пусть P
(
X(1) 6= X(1−)

)
= 0 и

пусть существует неубывающая непрерывная функция F , определённая на от-

резке [0, 1], такая, что для любого ε > 0

P
(
|Xn(t)−Xn(t1)| > ε, |Xn(t2)−Xn(t)| > ε

)
6 ε−2ν

[
F (t2)− F (t1)

]2γ (2.1)

для t1 6 t 6 t2 and n > 1, где ν > 0, γ > 1/2. Тогда Xn =⇒ X.

Доказательство Теоремы 2.1 приводится, например, в [18].

Всюду в дальнейшем символ d
= будет обозначать совпадение распределений.

Процессом Леви мы будем называть случайный процесс X(t), t > 0, обладаю-

щий следующими свойствами:

• X(0) = 0 почти всюду;

• X(t) - процесс с независимыми приращениям, то есть для любых N > 1

и t0, t1, ..., tN (0 6 t0 6 t1 6 ... 6 tN) случайные величины X(t0), X(t1) −

X(t0), . . . , X(tN)−X(tN−1) независимы в совокупности;

• X(t) - однородный процесс, то есть X(t+ h)−X(t)
d
= X(s+ h)−X(s) для

любых s, t, h > 0;
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• процесс X(t) является стохастически непрерывным, то есть для любых t > 0

и ε > 0

lim
s→t

P(|X(t)−X(s)| > ε) = 0;

• траектории процесса X(t) являются непрерывными справа и имеют конеч-

ные пределы слева в каждой точке.

Пусть ψt(s) - характеристическая функция случайной величины X(t) (ψt(s) =

EeisX(t), s ∈ R). Следующее утверждение описывает хорошо известное свойство

процессов Леви.

Лемма 2.1. Пусть X = X(t), t > 0 - случайный процесс Леви. Для любого t >

0 характеристическая функция случайной величины X(t) является безгранично

делимой и представима в виде

ψt(s) = [ψ1(s)]
t =

[
E eisX(1)

]t
, s ∈ R. (2.2)

Другими словами, пусть Y - произвольная безгранично делимая случайная

величина, тогда семейство безгранично делимых распределений с характеристи-

ческими функциями вида
[
E eisY

]t полностью определяют конечномерные распре-

деления некоторого процесса Леви X(t), t > 0, при этом X(1)
d
= Y .

Свойства процессов Леви детально описаны [15, 85]. Книги [13, 86] и обзорная

статья [45] рассматривают приложения процессов Леви для моделирования дина-

мики цен акций и финансовых индексов.

2.2 Сходимость процесса OFI к процессам Леви

Без потери общности всюду в дальнейшем мы будем рассматривать случайные

процессы, определённые на отрезке 0 6 t 6 1. Фактически это означает, что мы
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будем изучать поведение обобщённого двухстороннего процесса риска, следова-

тельно и процесса OFI, на конечном временном интервале. Равенство правой гра-

ницы единице может быть обеспечено соответствующим выбором единицы изме-

рения времени. Другими словами, мы рассматриваем процесс OFI в пространстве

Скорохода D.

Для того, чтобы рассмотреть асимптотические конструкции, которые позво-

лят формализовать сценарий бесконечного возрастания интенсивностей потоков

заявок и рассмотреть асимптотические («heavy-traffic») ыаппроксимации одномер-

ных распределений процесса OFI, зафиксируем момент времени t и рассмотрим

вспомогательный параметр n. Всюду в дальнейшем предполагается сходимость

при n → ∞, если не указано иное. Таким образом, рассмотрим последователь-

ность обобщённых процессов Кокса в виде

Qn(t) =
∑N

(n)
1 (Λn(t))

i=1
Xn,i, t > 0, (2.3)

где {N (n)
1 (t), t > 0}n>1 – это последовательность пуассоновских процессов с

единичными интенсивностями; для каждого n = 1, 2, ... случайные величины

Xn,1, Xn,2, ... одинаково распределены; для каждого n > 1 случайные величины

Xn,1, Xn,2, ... и процессы N
(n)
1 (t), t > 0, являются независимыми; для каждого

n = 1, 2, ... процессы Λn(t), t > 0, являются управляющими, то есть неубывающи-

ми положительными процессами Леви, независимыми от процесса

Zn(t) =
∑N

(n)
1 (t)

i=1
Xn,i, t > 0, (2.4)

и такими, что Λn(0) = 0 и существуют такие δ ∈ (0, 1], δ1 ∈ (0, 1] и константы

Cn ∈ (0,∞), обеспечивающие для любых t ∈ (0, 1] выполнение неравенства

EΛδ
n(t) 6 (Cnt)

δ1. (2.5)

64



Всюду в дальнейшем для определённости мы полагаем
∑0

i=1 = 0. В терминах

предыдущих разделов Zn(t) является условным однородным процессом OFI.

Ниже мы покажем, что что рассуждения, приведённые в [74] для симметрич-

ного случая могут быть с незначительными изменениями обобщены на случай

предельных процессов с несимметричными функциями распределения.

Из (2.3) и (2.4) несложно увидеть, что Qn(t) = Zn(Λn(t)). Поскольку для лю-

бого n > 1 Zn(t) и Λn(t) являются независимыми процессами Леви и, кроме того,

Λn(t) является управляющим процессом, то суперпозиция Qn(t) = Zn(Λn(t)) так-

же является процессом Леви (см., например, Теорему 3.1.1 в [61]). Таким образом,

верно следующее утверждение:

Лемма 2.2. Для любых 0 6 t1 < t2 < ∞ и любого n > 1 мы имеем Qn(t2) −

Qn(t1)
d
= Qn(t2 − t1).

Определим an = EXn,1 и предположим, что

0 < mβ
n ≡ E|Xn,1|β <∞ (2.6)

для некоторого β ∈ [1, 2].

Замечание 3. В контексте рассматриваемой задачи о моделировании дина-

мики потока заявок мы можем считать, что

EeisXn,1 =
α+
n f

+
n (s)

α+
n + α−n

+
α−n f

−
n (−s)

α+
n + α−n

, s ∈ R,

где f+n (s) и f+n (s) - это характеристические функции случайных величин X+
n,1 и

X−n,1, тогда

an ≡ EXn,1 =
α+
nEX

+
n,1

α+
n + α−n

−
α−nEX

−
n,1

α+
n + α−n
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и

mβ
n ≡ E|Xn,1|β =

α+
nE|X+

n,1|β

α+
n + α−n

+
α−nE|X−n,1|β

α+
n + α−n

,

а условие (2.6) обеспечивается условиями

0 < E|X+
n,1|β <∞, 0 < E|X−n,1|β <∞.

Лемма 2.3. Пусть Qn(t) является обобщённым процессом Кокса (2.3), удо-

влетворяющим условиям (2.5) and (2.6). Тогда для любого t ∈ [0, 1] и любого

ε > 0 имеем P
(
|Qn(t)| > ε

)
6 ε−βδmβδ

n ·
(
Cnt
)δ1.

Доказательство. Поскольку распределения одномерных процессов Кокса

(2.3) являются смесями пуассоновских распределений, то

P
(
|Qn(t)| > ε

)
=
∑∞

k=0
P
(
N

(n)
1 (Λn(t)) = k

)
P
(∣∣∣∑k

j=1
Xn,j

∣∣∣ > ε
)

=

=

∫ ∞
0

[∑∞

k=0
e−λ

λk

k!
P
(∣∣∣∑k

j=1
Xn,j

∣∣∣ > ε
)]
dP
(
Λn(t) < λ

)
. (2.7)

Изменение порядка суммирования и интегрирования становится возможным

благодаря очевидной равномерной сходимости соответствующего ряда. Последо-

вательно применим к уравнению (2.7) неравенств Маркова и Йенсена c δ ∈ (0, 1],

а также с учётом (2.5) и (2.6) получаем

P
(
|Qn(t)| > ε

)
6

1

εβδ

∫ ∞
0

[∑∞

k=0
e−λ

λk

k!

(
E
∣∣∣∑k

j=1
Xn,j

∣∣∣β)δ ] dP(Λn(t) < λ
)
, (2.8)

поскольку для δ ∈ (0, 1] функция f(x) = xδ является выпуклой при x > 0. Лекго

видеть, что E
∣∣∑k

j=1Xn,j

∣∣β 6
∑k

j=1 E|Xn,j|β = kmβ
n для 1 6 β 6 2. Следователь-

но, продолжая цепочку для (2.8) с учётом неравенства Йенсена для выпуклых
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функций и условия (2.5), получаем

P
(
|Qn(t)| > ε

)
6
mβδ
n

εβδ

∫ ∞
0

E
[
N

(1)
1 (λ)

]δ
dP
(
Λn(t) < λ

)
6

6
mβδ
n

εβδ

∫ ∞
0

[
EN

(1)
1 (λ)

]δ
dP
(
Λn(t) < λ

)
=
mβδ
n

εβδ
· EΛδ

n(t) 6
mβδ
n

εβδ
·
(
Cnt
)δ1.

Лемма доказана.

Для установления слабой сходимости случайного процесса Qn(t) в простран-

стве СкороходаD прежде всего требуется найти предельное распределение случай-

ной величины Qn(t) для каждого t > 0. Символ d−→ будет обозначать сходимость

по распределению, т.е. поточечную сходимость функций распределения во всех

точках непрерывности предельной функции распределения.

Пусть t = 1. Обозначим Nn = N
(n)
1 (Λn(1)). Предположим, что для некоторого

kn ∈ N имеет место сходимость

P(Xn,1 + ...+Xn,kn < x)
d−→ H(x), (2.9)

где H(x) - некоторая функция распределения безгранично делимой случайной

величины.

Также предположим, что

P
(
Λn(1) < knx

) d−→ P(U < x), (2.10)

где U – неотрицательная случайная величина такая, что её распределение не вы-

рождается в нуле. Заметим, что поскольку Λn(t) – процесс Леви, то случайная

величина U также является безгранично делимой будучи слабым пределом без-

гранично делимых случайных величин.

Лемма 2.4. Пусть Nn = N
(n)
1 (Λn), n > 1, где {N (n)(t)

1 , t > 0}, n = 1, 2, . . .
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это стандартные процессы Пуассона и Λn, n = 1, 2, . . . - положительные случай-

ные величины, такие, что для каждого n > 1 случайная величина Λn является

независимой от процесса N (n)
1 (t). Тогда для некоторой бесконечно возрастающей

последовательности kn вещественных чисел и некоторой функции распределения

A(x) сходимость

P(Nn < knx)
d−→ A(x)

имеет место быть тогда и только тогда, когда

P(Λn < knx)
d−→ A(x).

Доказательство может быть найдено, например в [51].

Из Леммы 2.4 следует, что сходимость (2.10) эквивалентна сходимости

P
(
Nn < knx

) d−→ P(U < x). (2.11)

По теореме переноса Гнеденко-Фахима [49] из условий (2.9) и (2.11) следует,

что

Qn(1) = Xn,1 + ...+Xn,Nn

d−→ Q, (2.12)

где Q - случайная величина с характеристической функцией

f(s) =

∫ ∞
0

(
h(s)

)u
dP(U < u), (2.13)

h(s) является характеристической функцией, соответствующей функции распре-

деления H(x). Заметим, что H(x) может не удовлетворять условию H(−x) =

1−H(x), то есть она может быть несимметричной.

Пусть Y – безгранично делимая случайная величина с функцией распреде-

ления H(x). Поскольку обе случайные величины Y и U являются безгранично
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делимыми, мы можем определить независимые процессы Леви Y (t) и U(t), t > 0,

такие, что Y (1)
d
= Y и U(1)

d
= Y . Тогда с учётом Леммы 2.1 легко установить,

что f(s) = EeisQ = E exp
{
isY (U(1))

}
, s ∈ R, то есть Q d

= Y (U(1)). Кроме то-

го, повторяя рассуждения из [61] (см. Теорему 3.3.1), мы можем легко видеть,

что случайная величина Q является безгранично делимой, следовательно, можно

определить процесс Леви Q(t), t > 0, такой, что Q(1)
d
= Q. Из Леммы 2.1 и из

сказанного выше следует, что мы можем рассматривать процесс Q(t) как супер-

позицию Q(t)
d
= Y (U(t)).

Поскольку в соответствии с (2.12) мы имеем Qn(1) =
∑Nn

i=1Xn,i =⇒ Q(1) и

Qn(t) и Q(t) являются процессами Леви, тогда, используя (2.2) заключаем, что

для любого t > 0

Qn(t) =
∑Nn,1(Λn(t))

i=1
Xn,i

d−→ Q(t). (2.14)

Поскольку Qn(t) и Q(t), 0 6 t 6 1 - процессы Леви, то почти всюду траектории

этих процессов будут лежать в пространстве Скорохода D.

Далее мы попробуем установить дополнительные условия для слабой сходи-

мости обобщённых процессов Qn(t) к процессу Леви Q(t) в пространстве D. Мы

последовательно рассмотрим каждое из условий Теоремы 2.1.

Во-первых, без потери общности пусть 0 6 t1 < t2 < . . . < tk 6 1. Сходимость(
Qn(t1), . . . , Qn(tk)

) d−→
(
Q(t1), . . . , Q(tk)

)
эквивалентна сходимости

(
Qn(t1), Qn(t2)−Qn(t1), . . . , Qn(tk)−Qn(tk−1)

) d−→

d−→
(
Q(t1), Q(t2)−Q(t1), ..., Q(tk)−Q(tk−1)

)
, (2.15)

поскольку линейное преобразование (x1, x2, ..., xk−1, xk) 7−→ (x1, x2 − x1, ..., xk −

xk−1) из Rk в Rk является взаимнооднозначным и непрерывным в обе стороны.

Но сходимость (2.15) следует из (2.14) и того факта, что Qn(t) and Q(t) являются
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процессам Леви.

Во-вторых, необходимо проверить условие P
(
Q(1) 6= Q(1−)

)
= 0. Это условие

выполняется тогда и только тогда, когда limt→1− P
(
|Q(1) − Q(t)| > ε

)
= 0 для

любого ε > 0 (см. (15.16) в [18]). Рассмотрим P
(
|Q(1) − Q(t)| > ε

)
. Поскольку

Q(t) - процесс Леви, то Q(1) − Q(t)
d
= Q(1 − t) по Лемме 2.2. Таким образом,

P
(
|Q(1) − Q(t)| > ε

)
= P

(
|Q(1 − t)| > ε

)
. Для каждого ε > 0 и каждого t ∈ [0, 1]

существует εt ∈ [ε/2, ε] такое что точки ±εt являются точками непрерывности

функции распределения случайной величины Q(1− t). Поскольку Qn(t)
d−→ Q(t)

для любого t ∈ [0, 1], то P
(
|Q(1 − t)| > εt

)
= limn→∞ P

(
|Qn(1 − t)| > εt

)
. Таким

образом, для любого ε > 0 и любого t ∈ [0, 1]

P
(
|Q(1− t)| > ε

)
6 P

(
|Q(1− t)| > εt

)
= lim

n→∞
P
(
|Qn(1− t)| > εt

)
. (2.16)

Из (2.16) с учётом (2.5) и Леммы 2.3 для любого δ ∈ (0, 1] получаем

P
(
|Q(1− t)| > ε

)
6 sup

n
P
(
|Qn(1− t)| > εt

)
6

6 sup
n

(
ε−βt mβ

n

)δ(
Cn|1− t|

)δ1 6 (2βδε−βδ|1− t|)δ1 sup
n
mβδ
n C

δ1
n . (2.17)

Поэтому если

K ≡ sup
n
Cδ1/δ
n mβ

n <∞, (2.18)

то из (2.17) следует limt→1− P
(
|Q(1)−Q(t)|>ε

)
64(Kε−β)δ limt→1− |1− t|δ1 =0.

В-третьих, проверим выполнение условия (2.1), если выполняются (2.5) и

(2.18). Как было замечено ранее, Qn(t) - процесс Леви и потому имеет незави-

симые приращения. Поэтому

P
(
|Qn(t)−Qn(t1)| > ε, |Qn(t2)−Qn(t)| > ε

)
=
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= P
(
|Qn(t)−Qn(t1)| > ε

)
· P
(
|Qn(t2)−Qn(t)| > ε

)
. (2.19)

Рассмотрим первый множитель правой части уравнения (2.19). По Лемме 2.2

Qn(t)−Qn(t1)
d
= Qn(t− t1). С учётом (2.18) по Лемме 2.3 получаем

P
(
|Qn(t)−Qn(t1)| > ε

)
= P

(
|Qn(t− t1)| > ε

)
6 (Kε−β)δ|t− t1|δ1. (2.20)

Для второго множителя в правой части уравнения (2.19) аналогичным образом

P
(
|Qn(t2)−Qn(t)| > ε

)
= P

(
|Qn(t2 − t)| > ε

)
6 (Kε−β)δ|t2 − t|δ1. (2.21)

Итого, из (2.20) и (2.21) следует

P
(
|Qn(t)−Qn(t1)| > ε, |Qn(t2)−Qn(t)| > ε

)
6 (Kε−β)2δ

[
(t− t1)(t2 − t)

]δ1 (2.22)

Легко видеть, что для любых t1 6 t 6 t2 выполняется (t−t1)(t2−t) 6 1
4(t2−t1)2.

Подставляя эту оценку в (2.22), получаем P
(
|Qn(t)−Qn(t1)| > ε, |Qn(t2)−Qn(t)| >

ε
)
6 ε−2βδ

[
1
2K(t2 − t1)

]2δ1. Таким образом, при выполнении условий (2.5) и (2.18)

автоматически выполняется условие (2.1) с F (t) ≡ 1
2Kt, ν = βδ и γ = δ1.

Подводя итоги этих рассуждений, связанных с выполнением необходимых

условий Теоремы 2.1, получаем следующее утверждение

Теорема 2.2. Пусть процесс дисбаланса потока заявок Qn(t) (см. (2.3))

управляется неубывающим положительным процессом Леви Λn(t), удовлетво-

ряющим условиям (2.5) и (2.10) с некоторыми δ, δ1 ∈ (0, 1] и kn ∈ N. Предполо-

жим, что случайные величины {Xn,j}j>1, n = 1, 2, ..., (случайные объёмы заявок)

удовлетворяют условию (2.9) с теми же значениями kn, а также удовлетворя-

ют условию (2.6) с некоторым β ∈ [1, 2]. Также предположим, что выполнено
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условие (2.18). Тогда процесс Qn(t) слабо сходится в пространстве Скорохода D

к процессу Леви Q(t) такому, что

E exp{isQ(1)} =

∫ ∞
0

(
h(s)

)u
dP(U < u), s ∈ R, (2.23)

где h(s) - характеристическая функция, соответствующая функции распреде-

ления H(x) в условии (2.9).

Следует заметить, что в Теореме 2.2 речь идёт о хорошо изученной слабой схо-

димости семимартингалов с независимыми и стационарными приращениями, см.,

например, [59]. Однако, случай суперпозиции процессов, рассматриваемый в дан-

ной работе, даёт возможность ослабить условия, требуемые для такой сходимости

в общем случае, скажем, в Следствии VII.3.6 в [59], где предполагается (в нашей

терминологии) δ = δ1 = 1.

Некоторые следствия этого результата, имеющие дело с симметричными пре-

дельными распределениями, рассмотрены в [74]. В частности, было показано, что

симметричные устойчивые процессы Леви могут возникать как предельные для

обобщённых процессов Кокса даже в случаях, когда дисперсии элементарных при-

ращений обобщённого процесса Кокса конечны. Как уже было сказано, в большин-

стве прикладных задач нет причин отвергать это предположение. В частности,

это относится к моделированию динамики книги заявок, где объёмы заявок огра-

ничены. Поэтому далее мы сконцентрируемся на случае конечных дисперсий и

рассмотрим условия сходимости процесса дисбаланса потоков заявок к некото-

рым известным моделям, в частности, к обобщённым гиперболическим процессам

Леви.
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2.3 Обобщённые гиперболические процессы Леви

как асимптотическая аппроксимация

процесса дисбаланса потоков заявок

Обозначим σ2
n = DXn,1. Из классической теории предельных теорем хорошо из-

вестно, что если при некоторых a ∈ R, 0 < σ2 <∞ и некотором ε > 0 выполняются

условия (при n→∞)

knan −→ a, knσ
2
n −→ σ2 and knE(Xn,1 − an)2I(|Xn,1 − an| > ε) −→ 0, (2.24)

то имеет место сходимость (2.9) с H(x) ≡ Φ
(
σ−1(x−a)

)
. В таком случае функция

распределения F (x) предельной случайной величины Q(1) в Теореме 2.2 явля-

ется сдвиг-масштабной смесью нормальных законов. Относительно недавно было

показано, что нормальные сдвиг-масштабные смеси возникают как предельные

в предельных теоремах для случайных сумм независимых одинаково распреде-

лённых случайных величин [68, 71, 72]. А именно, пусть {ξn,j}j>1, n = 1, 2, . . . ,

- двумерный массив построчно (для каждого фиксированного n) независимых и

одинаково распределённых случайных величин. Пусть {νn}n>1 - последователь-

ность целых неотрицательных случайных величин, таких что для каждого n > 1

случайные величины νn, ξn,1, ξn,2, . . . независимы. Обозначим Sn,k = ξn,1 + . . .+ξn,k.

Нижеследующая теорема доказана в [68].

Теорема 2.3. Предположим, что существуют: последовательности {kn}n>1

натуральных чисел и конечные числа α ∈ R и σ > 0, такие, что

P
(
Sn,kn < x

) d−→ Φ
(x− α

σ

)
. (2.25)

Предположим также, что νn → ∞ по вероятности. Тогда функции рас-
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пределения случайных сумм Sn,νn сходятся к некоторой функции распределения

F (x):

P
(
Sn,νn < x

) d−→ F (x),

тогда и только тогда, когда существует функция распределения A(x), такая,

что A(0) = 0,

F (x) =

∫ ∞
0

Φ
(x− αz
σ
√
z

)
dA(z),

и

P(νn < xkn)
d−→ A(x).

Из Теоремы 2.3 и Леммы 2.4 вытекает следующая

Теорема 2.4. Пусть процессы дисбаланса потоков заявок Qn(t) (см. (2.3))

управляются неубывающими положительными процессам Леви Λn(t), удовле-

творяющими условию (2.5) с некоторыми δ, δ1 ∈ (0, 1]. Предположим, что объё-

мы заявок {Xn,j}j>1, n = 1, 2, ..., удовлетворяют условиям (2.24) с некоторыми

kn ∈ N. Также предположим, что выполняется условие (2.18) с β = 2. Тогда про-

цессы Qn(t) слабо сходятся в пространстве Скорохода D к процессу Леви Q(t)

тогда и только тогда, когда существует неотрицательная случайная величина

U , такая, что

P
(
Q(1) < x

)
=

∫ ∞
0

Φ
(x− au
σ
√
u

)
dP(U < u), x ∈ R, (2.26)

и выполняется условие (2.10) с теми же самыми kn.

Класс распределений вида (2.26) неоднократно рассматривался Оле

Барндорфф-Нильсеном и его коллегами [8–10] для того, чтобы ввести обоб-

щённые гиперболические распределения и изучить их свойства.
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Класс нормальных сдвиг-масштабных смесей (refeq:th2) очень широк. Напри-

мер, он содержит обобщённые гиперболические законы с обобщёнными обратными

гауссовскими смешивающими распределениями, в частности, (a) симметричные и

несимметричные (скошенные) распределения Стьюдента (включая распределение

Коши), которым в (2.26) соответствуют обратные гамма-распределения в качестве

смешивающих; (b) variance-gamma (VG) распределения (включая симметричные и

несимметричные распределения Лапласа), которым в (2.26) соответствуют гамма-

распределения в качестве смешивающих; (c) нормальные\\обратные гауссовские

распределения, которым в (2.26) соответствует обратное гауссовское распределе-

ние в качестве смешивающего и много других. Вместе с обобщёнными гипербо-

лическими распределениями класс нормально сдвиг-масштабных смесей включа-

ет в себя симметричные строго устойчивые законы с µ = 0 и строго устойчивые

смешанные распределения, определённые на положительной полуоси, обобщённые

экспоненциальные, степенные распределения и многие другие.

Обобщённые гиперболические распределения демонстрируют высокую адек-

ватность при описании статистических закономерностей в поведении характери-

стик различных сложных систем, в частности, турбулентных систем и финансовых

рынков. В данный момент имеется большое множество публикаций, описывающих

модели на базе обобщённых гиперболических распределений. Лишь некоторые из

них: [8, 9, 11, 12, 26, 37–40, 79, 83, 89]. Поэтому ниже мы сконцентрируем наше вни-

мание на функциональных предельных теоремах, устанавливающих сходимость

процессов дисбаланса потоков заявок OFI к обобщённым гиперболическим про-

цессам Леви.

Конечно же, хорошая описательная способность обобщённых гиперболических

моделей связана с наличием достаточно большого количества параметров, кото-

рые описывают эти модели и, как следствие, могут быть точно настроены под

конкретный изучаемый процесс. Но в действительности было бы разумнее объяс-
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нить этот феномен с помощью функциональных предельных теорем, из которых

будет следовать возможность использования обобщённых гиперболических про-

цессов Леви как очевидных «heavy-traffic» асимптотических аппроксимаций.

Пусть pGIG(x; ν, µ, λ) - плотность обобщённого обратного гауссовского распре-

деления:

pGIG(x; ν, µ, λ) =
λν/2

2µν/2Kν

(√
µλ
) · xν−1 · exp

{
− 1

2

(µ
x

+ λx
)}
, x > 0.

Здесь ν ∈ R,
µ > 0, λ > 0, если ν < 0,

µ > 0, λ > 0, елси ν = 0,

µ > 0, λ > 0, если ν > 0,

Kν(z) - модифицированная функция Бесселя третьего рода с индексом ν,

Kν(z) =
1

2

∫ ∞
0

yν−1 exp
{
− z

2

(
y +

1

y

)}
dy, z ∈ C, Re z > 0.

Соответствующая функция распределения будет обозначаться как PGIG(x; ν, µ, λ),

PGIG(x; ν, µ, λ) =

∫ x

0

pGIG(z; ν, µ, λ)dz, x > 0,

и PGIG(x; ν, µ, λ) = 0, x < 0. Согласно [87], обобщённое обратное гауссовское рас-

пределение было введено в 1946 by Этьеном Хальфеном (Étienne Halphen), ко-

торый использовал его для описания месячных объёмов воды, проходящих через

гидроэлектростанции. В работе [87] обобщённое обратное гауссовское распреде-

ление было названо распределением Хальфена (Halphen distribution). В 1973 это

распределение было заново открыто Гербертом Сихелом (Herbert Sichel) [90], кото-

рый использовал его как смешивающий закон в специальных смешанных пуассо-
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новских распределениях (Sichel distributions, см., например, [69]) как дискретные

распределения с тяжёлыми хвостами. В 1977 эти распределения было ещё раз от-

крыты Оле Барндорфф-Нильсоном [7, 8], который, в частности, использовал их

для описания распределения объёмов частиц.

Класс обобщённых обратных гауссовских распределений довольно богат и со-

держит, в частности, как распределения с экспоненциально убывающими хвостами

(гамма-распределения с (µ = 0, ν > 0), так и распределения со степенным убыва-

нием хвостов (обратные гамма-распределения λ = 0, ν < 0), обратные гауссовские

распределения (ν = −1
2) и их предельный случай при λ→ 0 – распределение Леви

(устойчивое распределение с характеристической экспонентой, равной 1
2).

В 1977–78 Оле Барндорфф-Нильсен [7,8] ввёл класс обобщённых гиперболиче-

ских распределений как специальный класс нормальных сдвиг-масштабных сме-

сей. Для удобства мы будем использовать более простую параметризацию. Пусть

Let α ∈ R, σ > 0. Функция обобщённого гиперболического распределения с пара-

метрами α, σ, ν, µ, λ по определению

PGH(x;α, σ, ν, µ, λ) =

∫ ∞
0

Φ
(x− αz
σ
√
z

)
pGIG(z; ν, µ, λ)dz, x ∈ R. (2.27)

Заметим, что в (2.27) параметры сдвига и масштаба при смешивании разделе-

ны, но поскольку эти параметры напрямую связаны в (2.27), то это фактически

однопараметрическая смесь. Для параметризации обобщённых гиперболических

распределений существуют различные методики, см., например, [8, 9, 11,12,38,39,

83, 89]. Однако, плотность pGH(x;α, σ, ν, µ, λ) обобщённого гиперболического рас-

пределения не может быть выражена в элементарных функциях и имеет вид

pGH(x;α, σ, ν, µ, λ) =

∫ ∞
0

1

σ
√
z
ϕ
(x− αz
σ
√
z

)
pGIG(z; ν, µ, λ) dz =
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=

∫ ∞
0

1

σ
√

2πz
exp

{
− (x− αz)2

2σ2z

} λν/2zν−1

2µν/2Kν

(√
µλ
) exp

{
− 1

2

(µ
z

+ λz
)}
dz, x ∈ R,

который может быть в дальнейшем упрощён с использованием модифицирован-

ных функций Бесселя третьего рода..

Из Теоремы 2.3 мы легко получаем следующее

Утверждение 2.1. Предположим, что существуют: последовательность

{kn}n>1 натуральных чисел, конечные числа α ∈ R и σ > 0, такие, что имеет

место сходимость (2.25). Предположим, что νn → ∞ по вероятности. Тогда

распределение случайной суммы Sνn сходится к обобщенному гиперболическому

распределению

P
(
Sn,νn < x

) d−→ PGH(x;α, σ, ν, µ, λ)

тогда и только тогда, когда

P(νn < xkn)
d−→ PGIG(x; ν, µ, λ)

.

Из Теоремы 2.4 и Утверждения 2.1 с учётом эквивалентности соотношений

(2.10) и (2.11) мы легко получаем следующий результат о сходимости процесса

OFI к обобщённым гиперболическим процессам Леви.

Теорема 2.5. Пусть процессы дисбаланса потока заявок Qn(t) (см. (2.3))

управляются неубывающими положительным процессами Леви Λn(t), удовле-

творяющими условию (2.5) с некоторыми δ, δ1 ∈ (0, 1]. Предположим, что слу-

чайные объёмы заявок {Xn,j}j>1, n = 1, 2, ..., удовлетворяют условиям (2.24) с

некоторыми kn ∈ N and some a ∈ R и σ > 0. Также предположим, что выполня-

ется условие (2.18) с β = 2. Тогда процессы Qn(t) слабо сходятся в пространстве
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Скорохода D к обобщённому гиперболическому процессу Леви Q(t), такому, что

P
(
Q(1) < x

)
= PGH(x; a, σ, ν, µ, λ)

тогда и только тогда, когда

P(Λn(1) < knx)
d−→ PGIG(x; ν, µ, λ)

с некоторыми kn, ν, µ and λ.

Для завершения данной главы мы должны заметить, что Теоремы 2.2–2.5,

представленные выше, могут выступать в качестве очевидного объяснения вы-

сокой адекватности обобщённых гиперболических процессов Леви как моделей,

объясняющих динамику процесса дисбаланса потока заявок. Кроме того, они на-

прямую связывают субординатор в представлении обобщённых гиперболических

процессов Леви как подчинённых винеровских процессов с интенсивностями по-

токов заявок, определяемых процессом общего новостного фона. Поскольку по-

следний является слабо предсказуемым, описание типа его распределения требует

гораздо больше параметров (как минимум три в семействе обобщённых обратно-

гауссовских законов).

2.4 Финальная настройка модели

В данном разделе мы вернёмся к определению общего процесса дисбаланса пото-

ков заявок, введённого в Главе 1. В дополнение к обозначениям, введённым выше,

рассмотрим процесс дисбаланса (II) как

r(t) =
α+(t)

α−(t)
.
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Пусть Λ?(t) = Λ−(t) = α−(t)Λ∗(t). Тогда, очевидно, Λ+(t) = r(t)Λ?(t),

Λ(t) = (1 + r(t))Λ? (2.28)

и если r(t) = r = const, тогда

EXn,1 =
r

1 + r
EX+

n,1+
1

1 + r
EX−n,1, E|Xn,1|β =

r

1 + r
E|X+

n,1|β+
1

1 + r
E|X−n,1|β. (2.29)

Это означает, что вместо использования параметров α+ и α− можно повторить

все рассуждения, данные выше, в терминах процесса дисбаланса потоков заявок

r(t).

Рис. 2.1: Гистограмма количества заявок на покупку за 15-секундные интервалы
времени и плотность подходящего GIG-распределения. Фьючерс на индекс РТС,
дневная сессия 2014.07.01).

Как можно было видеть раньше, если r(t) = r = const, то процесс OFI может

быть успешно аппроксимирован с помощью обобщённых гиперболических процес-

сов Леви с некоторыми параметрами a, σ, ν, µ, λ. Тем не менее, если процесс r(t)

считается случайным, то в финальной версии модели предполагается, что коэф-
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фициенты a, σ, ν, µ, λ должны зависеть от r(t), так что финальная модель пред-

ставляется в виде обобщённого гиперболического процесса Леви со случайными

параметрами. Потому в соответствии с (2.29) параметры a(t) и σ(t) аккумулиру-

ют информацию о текущем балансе между размерами заявок и интенсивностями

покупателей и продавцов, в то время как в соответствии с (2.28) параметры ν(t),

µ(t), λ(t) зависят только от процесса r(t). Прогнозирование динамики статисти-

ческих характеристик такого процесса и соответствующих рисков сводится к ана-

лизу траектории точки в пятимерном параметрическом пространстве. Для этих

целей могут использоваться многомерные авторегрессионные модели.
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Глава 3

Токсичность потока заявок

3.1 Введение

Активное развитие электронной торговли на финансовых рынках выявило необхо-

димость анализа биржевых высокочастотных данных для более глубокого понима-

ния рыночной микроструктуры, на которую оказали огромное влияние компании,

занимающиеся автоматизированным высокочастотным трейдингом (они форми-

руют до 70–80% дневного оборота на ведущих мировых площадках). Эти высо-

кочастотные системы, как правило, являются маркет-мейкерами – поставщиками

ликвидности посредством размещения пассивных (лимитных) заявок на различ-

ных уровнях электронной книги заявок. Поставщик ликвидности, выставивший

пассивную заявку, не имеет возможности влиять на время её исполнения (разу-

меется, кроме как снять заявку). Маркет-мейкеры зачастую не прогнозируют в

явном виде динамику рынка, а используют шумовую составляющую рыночных

движений. Степень эффективности деятельности маркет-мейкеров связана с кон-

тролем риска оказаться с большим количеством купленных или проданных кон-

трактов, что напрямую зависит от их способности контролировать эффект небла-

гоприятного отбора (adverse selection) в отношении пассивных заявок.
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Практики, как правило, описывают принцип неблагоприятного отбора как

«естественную тенденцию слишком быстрого исполнения пассивных заявок в тех

ситуациях, когда они должны исполняться медленно, и наоборот: исполняться

слишком медленно в тех ситуациях, когда они должны исполниться быстро»

( [60]). Эта интуитивная формулировка согласуется с ранними микроструктур-

ными моделями рынка [35, 47, 78], в которых информированные трейдеры полу-

чают преимущество над неинформированными участниками рынка. Поток заявок

считается токсичным, когда происходит эффект неблагоприятного отбора маркет-

мейкеров, поставляющих ликвидность.

В работе [36] предложена эмпирическая процедура оценки токсичности потока

заявок на основе анализа информации о сделках. В данной главе рассматрива-

ется более точный подход к измерению токсичности рынка, использующий всю

доступную информацию о потоке заявок (не только сами сделки, но также и по-

становки/снятия заявок) на основе аналитической модели процесса дисбаланса

потока заявок, рассмотренной ранее в работах [28,76].

3.2 Модель потоков заявок

В Главе 2 в качестве математической модели эволюции процесса дисбаланса по-

тока заявок было предложено использовать двусторонний процесс риска – специ-

альный обобщенный (compound) пуассоновский процесс. Следуя этому подходу,

зафиксируем малый интервал времени [0;T ], в течение которого параметры рас-

пределений, описывающих объёмы заявок, и интенсивности потоков заявок одного

типа остаются постоянными и известными. Для t ∈ [0, T ] пусть N+(t) и N−(t) –

количества заявок, пришедших от покупателей и продавцов соответственно в те-

чение интервала времени [0, t] – независимые пуассоновские процессы с интенсив-

ностями λ+ > 0 и λ− > 0 (EN+(t) = λ+t, N+(0) = 0, EN−(t) = λ−t, N−(0) = 0).
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Пусть X+
i и X−i , i = 1, 2, . . . , – объёмы заявок, поступающих от покупателей и

продавцов соответственно – две независимые последовательности независимых и

одинаково в каждой последовательности распределенных случайных величин с

функциями распределения G(x) и F (x) соответственно, независимых от пуассо-

новских процессов N+(t) и N−(t). Положим

Q+(t) =

N+(t)∑
i=1

X+
i , Q−(t) =

N−(t)∑
j=1

X−j

и определим процесс дисбаланса потока заявок Q(t) как

Q(t) = Q+(t)−Q−(t).

3.3 Профиль мгновенной токсичности потока за-

явок

Как уже было сказано выше, поток заявок считается токсичным, когда он ока-

зывается неблагоприятным для маркет-мейкеров, предоставляющих ликвидность

в книге заявок. В работе [36] предложена процедура оценки токсичности потока

заявок на основе анализа информации об интенсивности и направлении сделок (на-

правление сделки определяется в зависимости от того, кто являлся её инициатором

– покупатель или продавец). В данном разделе будет предложен более точный

подход к измерению токсичности потока заявок, использующий всю доступную

информацию о заявках (не только сами сделки, но также и постановки/снятия

заявок).

Чтобы формализовать понятие токсичности потока заявок, для начала рас-

смотрим процесс дисбаланса потока заявокQ(t) = Q+(t)−Q−(t) в предположении,
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что EQ(t) > 0, т. е.

λ+EX+
1 > λ−EX−1 ,

что означает преимущество покупателей над продавцами в рамках интервала

[0, T ]. Предположим, что Q(0) = 0.

Для u > 0 рассмотрим вероятность

ϕ±(u, T ) = P( inf
0<t6T

Q(t) > −u),

т. е. вероятность того, что траектория процесса Q(t) в течение интервала вре-

мени [0, T ] целиком будет находиться не ниже уровня −u, а также аналогичную

предельную вероятность на бесконечном интервале времени:

ϕ±(u) = P(inf
t>0

(
Q+(t)−Q−(t)

)
> −u) = lim

T→∞
ϕ±(u, T ).

Вероятность ϕ±(u) описывает вероятность того, что при положительном тренде

процесс дисбаланса никогда не достигнет отрицательного уровня−u при условии,

что параметры потока заявок (λ+, λ−, G(x) и F (x)) остаются неизменными.

Определение 1. Функцию ϕ±(u) будем называть профилем мгновенной

токсичности потока заявок.

Введенная таким образом характеристика – профиль мгновенной токсичности

потока заявок – формально совпадает с вероятностью неразорения в классиче-

ской модели коллективного риска со случайными премиями, рассматривавшейся,

например, в работах [23, 24, 92]. В некоторых источниках, см., в частности, [69],

справедливо отмечено, что интерпретация этого показателя именно как вероят-

ности физического разорения страховой компании некорректна, поскольку изна-

чальное предположение о неизменности основных параметров потоков страховых

премий и страховых выплат в течение бесконечного интервала времени заведомо
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не выполняется. Тем не менее эта характеристика является удобным показателем

текущей эффективности работы страховой компании и имеет смысл некоей оцен-

ки качества текущего состояния параметров страховой деятельности. Точно так

же профиль мгновенной токсичности потока заявок является удобно интерпрети-

руемым показателем неустойчивости текущего состояния потоков заявок.

Из работ [23,24] следует

Лемма 3.1. Функция профиля мгновенной токсичности потока заявок ϕ±(u)

удовлетворяет интегральному уравнению

(λ+ + λ−)ϕ±(u) = λ−
∫ u

0

ϕ±(u− v)dF (v) + λ+

∫ ∞
0

ϕ±(u+ v)dG(v).

Если R – решение характеристического уравнения

λ+(Ee−RX
+
1 − 1) + λ−(EeRX

−
1 − 1) = 0,

то

ϕ±(u) =
e−Ru

E{e−RQ(t)|τ <∞}
,

при этом ϕ±(u) > 1− e−Ru.

3.4 Токсичность потока заявок

Профиль токсичности представляет собой функцию, аргументом которой являет-

ся уровень u. Это затрудняет сравнение токсичности потоков заявок на разных

участков рынка, поскольку, вообще говоря, в множестве функций нельзя ввести

отношение порядка. Поэтому хотелось бы иметь некий интегральный показатель

токсичности, выражаемый одним числом. Для построения такого показателя мож-

но воспользоваться одним из двух подходов.
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3.4.1 Байесовский подход

Выделим некий «характеристический» уровень u0, пересечение которого может

иметь серьезные последствия. Пусть w(x) – некоторая плотность распределения

вероятностей, обладающая свойствами

∫ ∞
0

w(x)dx = 1,

∫ ∞
0

xw(x)dx = u0. (3.1)

Определение 2. Байесовским показателем мгновенной токсичности

потока заявок θ(w)
± называется величина

θ
(w)
± = θ

(w)
± (u0) =

∫ ∞
0

ϕ±(u)w(u)du.

По сути показатель мгновенной токсичности потока заявок θ± есть математи-

ческое ожидание «случайного» профиля мгновенной токсичности ϕ±(U), где U –

неотрицательная случайная величина с плотностью распределения w(x) и имею-

щая математическое ожидание u0.

В случае, когда EQ(t) < 0, т. е. λ+EX+
1 < λ−EX−1 , что означает преимущество

продавцов над покупателями на интервале [0, T ], вместо ϕ±(u) будем рассматри-

вать вероятность

ϕ∓(u) = P(sup
t>0

(
Q+(t)−Q−(t)

)
6 u) = lim

T→∞
ϕ∓(u, T ),

которая описывает вероятность того, что при отрицательном тренде траектория

процессаQ(t) не превысит положительный уровень u при условии, что параметры

потока заявок (λ+, λ−, G(x) и F (x)) остаются неизменными.

В таком случае в качестве байесовского показателя мгновенной токсично-
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сти потока заявок θ возьмем величину

θ
(w)
∓ = θ

(w)
∓ (u0) =

∫ ∞
0

ϕ∓(u)w(u)du.

3.4.2 Квантильный подход

При условии EQ(t) > 0 на промежутке [0, T ] зафиксируем некоторое 0 < α < 1.

Определение 3. Квантильным α-показателем мгновенной токсичности

потока заявок называется такое минимальное значение q±, при котором

ϕ±(q±) > α

Таким образом, при наличии положительного тренда у процесса Q(t) кван-

тильный α-показатель мгновенной токсичности – это настолько минимальное зна-

чение q±, что вероятность того, что траектория процесса Q(t) на интервале [0, T ]

целиком пройдёт выше уровня −q± больше или равна α. Чем больше значение q±,

тем более токсичен поток заявок от покупателей.

По аналогии с предыдущим пунктом при наличии у процесса Q(t) отрица-

тельного тренда (т. е. при условии λ+EX+
1 < λ−EX−1 ) α-квантильный показатель

мгновенной токсичности q∓ определяется из уравнения

ϕ∓(q∓) > α.

Чем больше значение q∓, тем более токсичен поток заявок от продавцов на интер-

вале [0, T ].
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3.5 Модели потоков заявок

В некоторых случаях удаётся напрямую вычислить профиль мгновенной токсич-

ности потока заявок. Аналоги моделей, приведённых ниже, рассмотрены в рабо-

те [23] в рамках модели Крамера–Лундберга со стохастическими премиями.

3.5.1 Модель рынка с заявками единичного объёма

Рассмотрим простейшую модель рынка, где потоки заявок имеют единичный объ-

ём, т. е.

P(X+
i = 1) = P(X−i = 1) = 1.

В этом случае

Q(t) =

N+(t)∑
i=1

1−
N−(t)∑
i=1

1 = N+(t)−N−(t).

Несмотря на очевидно идеальный характер такого примера, он имеет реальный

практический смысл, поскольку при этом становится возможным учитывать чи-

стые интенсивности потоков заявок и отслеживать влияние их соотношения (дис-

баланса интенсивностей потоков заявок) на токсичность ситуации. Более того, в

таком случае рассматриваемый процесс дисбаланса потоков заявок Q(t) является

простейшим процессом рождения и гибели, различные характеристики которого

можно исследовать специально разработанными для этого методами.

Если λ+ > λ−, то покупатели преобладают над продавцами и характеристиче-

ское уравнение имеет вид

λ+
[
e−R − 1

]
+ λ−

[
eR − 1

]
= 0,
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откуда eR = λ+

λ− или eR = 1. По Лемме 3.1 для u > 0 имеем

ϕ±(u) > 1−
(
λ−

λ+

)u
, ϕ±(∞) = 1.

Равенство ϕ±(u) = ϕ±([u]) очевидно. Для целых u интегральное уравнение пере-

ходит в разностное

λ1ϕ±(u+ 1)− (λ− + λ+)ϕ±(u) + λϕ±(u− 1) = 0, (3.2)

откуда ϕ±(u) = C1 +C2

(
λ−

λ+

)u
, C1 = ϕ(∞) = 1. Константу C2 найдём при подста-

новке в уравнение (3.2) u = 0:

(
λ− + λ+

)
ϕ(0) = λϕ(1), C2 = −λ

−

λ+
,

откуда получаем, что для u > 0 профиль мгновенной токсичности имеет вид

ϕ±(u) = ϕ±([u]) = 1−
(
λ−

λ+

)[u]+1

.

Байесовский показатель мгновенной токсичности

Коль скоро исследователь может сам назначать уровень u0, относительно которого

будут рассчитываться характеристики токсичности потока заявок, будем рассмат-

ривать u0 на множестве натуральных чисел, а в качестве функции w(u) можно

выбрать функцию плотности вероятности распределения Пуассона (относительно

считающей меры), также определённую на множестве натуральных чисел. Для
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Рис. 3.1: Функция профиля токсичности потока заявок ϕ±(u) в модели рынка с
единичными потоками заявок для разных значений r = λ−

λ+ . Чёрным цветом нари-
сована функция w(u) – плотность (относительно считающей меры) пуассоновского
распределения со средним u0 = 3

удобства обозначим r = λ−

λ+ , при этом r < 1. В таком случае

θ
(w)
± (u0) =

∫
N
ϕ±(u)w(u)du =

∞∑
k=0

(1− rk+1)
uk0e

−u0

k!
= 1− re−u0

∞∑
k=0

(ru0)
k

k!
=

= 1− reu0(r−1).

На рис. 3.2a изображён график токсичности в зависимости от значений r = λ−

λ+ для

фиксированного значения u0 = 3 в условиях положительного тренда (λ+ > λ−).

Чем меньше значение r, тем токсичнее рынок. И напротив: рынок нетоксичен,

когда λ+ = λ−, то есть наблюдается баланс между покупателями и продавцами.
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Квантильный показатель мгновенной токсичности

Для заданного α ∈ (0, 1) квантильный показатель мгновенной токсичности – это

такое минимальное q± ∈ N, при котором

ϕ±(q±) = 1− rq±+1 > α,

откуда

q±(α) =

⌈
ln(1− α)

ln r
− 1

⌉
Заметим, что при r = 1 α-квантильный показатель мгновенной токсичности не

определён и в таком случае полагается равным нулю.

На рис. 3.2b на график нанесены различные значения квантильного показа-

теля мгновенной токсичности потока заявок в зависимости от значения r = λ−

λ+

на промежутке [0, T ]. Токсичность покупателей максимальна при малых значени-

ях r и близка к нулю при наличии баланса между покупателями и продавцами.

Монотонность обоих графиков по r подтверждает обоснованность использования

(a) Байесовский подход (b) Квантильный подход

Рис. 3.2: Графики показателей токсичности в зависимости от значения r = λ−

λ+ .

θ± и q± в качестве показателей токсичности потока заявок в случае модели рынка

с заявками единичного объёма.
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3.5.2 Модель рынка с экспоненциальными объёмами за-

явок

Пусть объёмы заявок покупателей и продавцов имеют экспоненциальное распре-

деление, т. е.

G(t) = 1− e−bt и F (t) = 1− e−at.

В случае, когда покупатели преобладают над продавцами, т. е. λ+/b > λ−/a,

характеристическое уравнение имеет вид

λ+

[
b

b+R
− 1

]
+ λ−

[
a

a−R
− 1

]
= 0,

откуда R = (λ+a − λ−b)/(λ+ + λ−) или 0, а профиль мгновенной токсичности

потока заявок ( [23])

ϕ±(u) =
(a+ b)λ−

(λ+ + λ−)a
exp

(
−λ

+a− λ−b
λ+ + λ−

u

)
.

В случае, когда продавцы преобладают над покупателями

ϕ∓(u) =
(a+ b)λ+

(λ+ + λ−)b
exp

(
−λ

−b− λ+a

λ+ + λ−
u

)
.

Байесовский показатель мгновенной токсичности

На множестве функций w(u), удовлетворяющих условиям (3.1), рассмотрим функ-

ции, удовлетворяющие также условию

∫ ∞
0

x2w(x)dx−
(∫ ∞

0

xw(x)dx

)2

= 1, (3.3)

то есть обеспечивающие единичную дисперсию соответствующей случайной вели-

чины, имеющей функцию w(u) в качестве плотности своего распределения.
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Для вычисления байесовского показателя мгновенной токсичности возьмём в

качестве w(u) плотность гамма-распределения

w(u) = uk−1 e−u/θ

θk Γ(k)
,

где Γ(k) – гамма-функция Эйлера:

Γ(k) =

+∞∫
0

tk−1e−t dt.

Поскольку математическое ожидание и дисперсия случайной величины U , име-

ющей гамма-распределение, равны kθ и kθ2 соответственно, то с учётом условий

(3.1) и (3.3) значения k и θ определяются из уравнений kθ = u0 и kθ2 = 1, откуда

k = u2
0 и θ = u−1

0 .

Рис. 3.3: Функция профиля токсичности ϕ±(u) в модели рынка с экспоненциаль-
ными объёмами заявок для разных наборов (λ+, λ−, b, a). Чёрным цветом показана
весовая функция w(u) – плотность гамма-распределения Γ(u2

0, u
−1
0 ) при u0 = 2
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Для удобства обозначим

β =
(a+ b)λ−

(λ+ + λ−)a
и γ =

λ+a− λ−b
λ+ + λ−

> 0. (3.4)

Байесовский показатель мгновенной токсичности равен

θ
(w)
± (u0) =

∫ ∞
0

ϕ±(u)w(u)du =

∫ ∞
0

(1− βe−γu)uk−1 e−u/θ

θk Γ(k)
du =

= 1− β

θkΓ(k)

∫ ∞
0

e−(γ+θ−1)uuk−1du =

[
t =

θγ + 1

θ
u

]
=

= 1− β

(θγ + 1)kΓ(k)

∫ ∞
0

e−t
θk−1

(θγ + 1)k−1
tk−1 θ

θγ + 1
dt =

= 1− β

(θγ + 1)k
.

После подстановки k и θ получаем значение показателя

θ±(u0) = 1− β(
γu−1

0 + 1
)u20 .

Квантильный показатель мгновенной токсичности

Для заданного α ∈ (0, 1) квантильный показатель мгновенной токсичности – это

такое минимальное q±, при котором

ϕ±(q±) = 1− βe−γq± > α.

Так как функция ϕ± является непрерывной по q±, то данное неравенство может

быть обращено в равенство, откуда получаем

q±(α) =
ln β − ln(1− α)

γ
.
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Заметим, что байесовский и квантильный показатели токсичности являются

монотонными по каждой из величин β и γ.

3.6 Реальные данные

В данном разделе описывается структура данных о потоках заявок, на базе кото-

рых можно провести валидацию модели, предложенной в разделе 6.2. Далее оце-

ним параметры потока заявок λ+, λ−, b, a в режиме скользящего окна и рассчитаем

функции профиля мгновенной токсичности, а также показатели мгновенной ток-

сичности потока заявок θ(t) и q(t) в режиме реального времени и проанализируем

адекватность полученных характеристик.

3.6.1 Описание данных

Как и в Главе 1, рассматриваются данные о потоках всех заявок (лимитных, ры-

ночных и заявок на отмену) на первые d = 5 уровней книги заявок фьючерса на

индекс РТС за период с 1 по 30 июля 2014 г.

3.6.2 Процедура оценки параметров

Разобьём один из рассматриваемых торговых дней (1 июля 2014 г.) на временные

интервалы с шагом τ = 15 секунд. При этом исключим интервалы времени в пер-

вые пять минут торгов (с 10:00 до 10:05), а также в последние пять минут торгов

(с 18:40 до 18:45), поскольку они характеризуются аномальными всплесками вола-

тильности, слабо поддающейся анализу в рамках представленной модели. Внутри

каждого τ -интервала проведём оценку параметров λ+, λ−, b и a согласно модели

рынка с экспоненциальными объёмами заявок. Результат оценки параметров в

режиме реального времени изображён на рис. 3.4.
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Рис. 3.4: Оценка параметров λ+, λ−, b, a в режиме реального времени (серый цвет
– интервалы доверия), ось x – номер соответствующего τ -интервала (фьючерс на
индекс РТС, дневная сессия 2014.07.01)

3.6.3 Показатели токсичности

На основе оценок для λ+, λ−, b, a можно вычислить β и γ, а затем построить гра-

фики показателей мгновенной токсичности потока заявок θ(u0) и q(α) для фикси-

рованных u0 и α в режиме реального времени (см. рис. 3.5) и идентифицировать

участки, на которых деятельность покупателей или продавцов была токсичной.

Прикладные исследования демонстрируют достаточную значимость данного по-

казателя для своевременной идентификации участков неблагоприятного отбора

маркет-мейкеров.

Таким образом, в данном разделе рассмотрена микроструктурная модель рын-

ка, в которой потоки заявок моделируются пуассоновскими процессами с посто-

янными интенсивностями (такая аппроксимация возможна на небольших времен-
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Рис. 3.5: Графики β, γ, рассчитанных по формулам (3.4), байесовского и кван-
тильного показетелей токсичности в режиме реального времени, ось x – номер со-
оветствующего τ -интервала (фьючерс на индекс РТС, дневная сессия 2014.07.01)

ных интервалах). В качестве интегрального индикатора текущего состояния книги

заявок применялся дисбаланс потока заявок (order flow imbalance), который ис-

пользует не только текущие значения наилучших цен покупки и продажи, но и

влияние событий «в глубине» книги заявок и потому меняется существенно быст-

рее и позволяет интерполировать динамику рынка между изменениями цены, в

частности, отслеживать ситуации, связанные с токсичностью потока заявок. В

рамках рассмотренной модели были введены такие понятия, как мгновенный про-

филь токсичности, а также байесовский и квантильний показатели токсичности,

рассчитываемые на основе параметров, описывающих потоки всех заявок. Эти по-

казатели рассчитываются для двух модельных типов потоков заявок, в первом из

которых заявки имеют единичный объём, во втором – объём заявок является слу-

98



чайным и имеющим показательное распределение. Для последней из двух моделей

была проведена валидация на реальных данных (фьючерс на индекс РТС) и были

построены показатели токсичности в режиме реального времени. Предложенная

методика расчёта показателей токсичности на основе информации о потоках всех

заявок является перспективной и может быть распространена на модели рынка с

неоднородными интенсивностями потоков заявок.
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Заключение

Данная работа посвящена разработке модели неоднородных и нестационарных

потоков заявок в специализированных системах обслуживания с использовани-

ем обобщённых процессов риска, а также её теоретическому и статистическому

исследованию.

Основные результаты и выводы В работе показано, что процесс дисба-

ланса потоков заявок вполне естественно трактовать как так называемый двусто-

ронний процесс риска - процесс риска со случайными премиями. При этом в ка-

честве формальной математической модели последнего предложено использовать

специальный обобщенный дважды стохастический пуассоновский процесс (обоб-

щенный процесс Кокса). При обосновании указанной модели определяющую роль

играет предложенное мультипликативное представление накопленных интенсив-

ностей, согласно которому интенсивности потоков заявок на покупку и продажу

с точностью до неслучайного множителя пропрциональны одному и тому же слу-

чайному процессу, характеризующему общий ажиотаж на рынке. Это модельное

представление получило в диссертации как теоретическое, так и статистическое

обоснование.

Основным теоретическим результатом диссертации являются предельные тео-

ремы для процесса дисбаланса потоков заявок. В работе были получены теоремы

переноса для одномерных распределений и функциональные предельные теоремы
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в реалистичных условиях существования вторых моментов элементарных скач-

ков. В прежних работах были доказаны функциональные предельные теоремы

для обобщенных процессов Кокса, у которых скачки имеют конечную дисперсию,

а управляющие процессы удовлетворяют условию типа Гельдера с показателями,

меньшими единицы. В данной работе вышеупомянутые результаты распростране-

ны на несимметричный случай и приведен критерий сходимости обобщенных про-

цессов Кокса и, в частности, двусторонних процессов риска, описывающих процесс

дисбаланса потоков заявок, к обобщенным гиперболическим процессам Леви.

К числу основных результатов диссертации следует отнести предложенную

формализацию понятия понятия токсичности потоков заявок. В рамках предло-

женного подхода, основанного на формальной тождественности понятия токсич-

ности потока заявок и понятия вероятности неразорения в процессах риска со

случайными премиями был разработан и реализован индикатор токсичности по-

тока заявок, способный предсказывать ценовые шоки и токсичную ликвидность.

Также был предложен соответствующий метод вычисления такого индикатора и

проведено его тестирование на финансовых данных. Данный индикатор может

быть внедрён в системы риск-менеджмента различных финансовых институтов, а

также может быть успешно использован финансовыми регуляторами для контро-

ля качества финансовой экосистемы.

Дальнейшие перспективы развития исследований

В данной работе используется математическая модель двухсторонних процес-

сов риска, использование которой может быть распространено на широкий спектр

задач, включая анализ поведения высоконагруженных телекоммуникационных си-

стем и различных систем массового обслуживания. Теоретические результаты, по-

лученные в данной работе могут быть распространены на многомерный случай,

поскольку интенсивности потоков заявок на фиксированном финансовом активе
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также зависят от динамики интенсивностей потоков заявок на связанных активах

и потому представляется возможным аналитически описать часть динамики внеш-

него информационного фона Λ(t), выступающего в качестве управляющего про-

цесса в определении процесса дисбаланса потоков заявок, а также учесть наблюда-

емые кросс-корреляционные эффекты между активами. Показатель токсичности,

рассмотренный в третьей главе, может быть очевидным образом адаптирован для

модели потоков заявок с неоднородными интенсивностями, а также по сравнению

с существующими подходами более тонко настроен для моделей потоков заявок с

распределениями объёмов заявок, отличными от экспоненциальных.
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