Вы здесь

Агошков Валерий Иванович

Версия для печатиSend by email

Профессор кафедры ВТМ

Ученая степень: 
д-р физ.-мат. наук

Родился в г. Валуйки Белгородской обл. Профессор кафедры, главный научный сотрудник ИВМ РАН.

Окончил Московский инженерно-физический институт (1970), аспирантуру Вычислительного центра СО АН (1975).

Кандидат физико-математических наук (1975), тема диссертации: «Вариационные методы в задачах переноса нейтронов» (научный руководитель Г.И. Марчук). Доктор физико-математических наук (1988), тема диссертации: «Функциональные пространства, обобщенные решения уравнений переноса и свойства их гладкости». Ученое звание — профессор по специальности «вычислительная математика» (1994).

Заслуженный деятель науки Российской Федерации (2007).

Награждён Почётной грамотой Российской академии наук и Профсоюза работников РАН (1999). Исследование В.И. Агошкова по теории операторов Пуанкаре-Стеклова и их приложениям для конструирования и оптимизации алгоритмов разделения области удостоено звания «Лучшая научная работа за 1989 г.» по Отделению математики АН СССР.

Состоит в международных научных обществах (AMS, GAMM), в течение ряда лет был членом Комитета «Приложения математики» Европейского математического общества. Член Главной редколлегии «EOLSS» и редколлегий двух международных научных журналов.

С 1970 по 1980 гг. работал в ВЦ СО АН СССР, а с 1980 по настоящее время — в ИВМ РАН.

Сочетает научную работу с педагогической, преподает в вузах с 1972 г. Профессор Московского физико-технического института (с 1995).

Область научных интересов: вычислительная математика, теория краевых задач для кинетических уравнений, сопряженных уравнений и их приложений в нелинейных, обратных и оптимизационных задачах.

В области методов вычислительной математики В.И. Агошков разработал специальные проекционно-сеточные алгоритмы для задач теории переноса, ввел общую проекционную форму метода интегральных тождеств, предложил новые схемы расщепления для гиперболо-параболической системы уравнений «мелкой воды». Является соавтором нового направления в теории методов разделения области, базирующегося на теории операторов Пуанкаре-Стеклова.

В 1975–1988 гг. В.И. Агошков выполнил цикл работ в области теории краевых задач для уравнений переноса на основе новых функциональных пространств, изучил свойства гладкости обобщенных решений, дал обоснование ряда вычислительных алгоритмов решения задач для уравнения переноса. В 1981–1992 гг. им выполнены исследования в области теории и приложений специальных классов псевдо-дифференциальных операторов — граничных операторов Пуанкаре-Стеклова и операторов отражения.

В области сопряженных уравнений и их приложений в обратных и оптимизационных задачах В.И. Агошкову принадлежит цикл работ, посвященный развитию теории сопряженных уравнений и алгоритмов возмущений в нелинейных задачах; в 1991–2002 гг. им разработана методология исследования и численного решения широкого класса обратных задач и задач управления.

10 его учеников защитили кандидатские или докторские диссертации.

Автор более 200 печатных работ, 16 монографий и учебных пособий, в т. ч. 3 монографий на иностранных языках. Основные публикации: Введение в проекционно-сеточные методы — М., Наука, 1981, 420 с. (соавт. Марчук Г.И.); Introduction aux Methodes des Elements Finis — Moscow, MIR, 1985, 432 p. (co-auth. G. Marchuk, in French); Обобщённые решения уравнений переноса и свойства их гладкости — М., Наука, 1988, 240 с.; Сопряжённые уравнения и алгоритмы возмущений в нелинейных задачах математической физики — М., Наука, 1993, 275 с. (соавт. Марчук Г.И., Шутяев В.П.).

События

с 23 августа по 31 октября
с 04 сентября по 04 октября
с 10 сентября по 26 сентября

Предложения по содержанию и функционированию сайта направляйте по адресу cmcproject@cs.msu.ru.