Вы здесь

Ложкин Сергей Андреевич

Версия для печатиSend by email

Зам. декана по научной работе и финансам, профессор кафедры МК, и.о. зав. лабораторией ДУСП

Ученая степень: 
д-р физ.-мат. наук

Родился 29 марта 1951 г., город Киров. Профессор.

В 1968 г. окончил с золотой медалью среднюю школу № 23 г. Кирова. В том же году поступил на 1 курс механико-математического факультета МГУ, а в 1970 г. был переведён на 3-й курс вновь образованного факультета вычислительной математики и кибернетики, который окончил с отличием в 1973 г. Окончил аспирантуру факультета ВМК МГУ (1978).

Кандидат физико-математических наук (1979), тема диссертации: «Реализация функций алгебры логики схемами из функциональных элементов с задержками» (научный руководитель О.Б. Лупанов). Доктор физико-математических наук (1998), тема диссертации: «Асимптотические оценки высокой степени точности для сложности управляющих систем». Учёные звания — доцент (1990), профессор (2003).

Заслуженный профессор Московского университета (2009).

Награждён медалью «В память 850-летия Москвы» (1997).

Работает в МГУ с 1978 г.: ассистент (1978–1988), доцент (1988–1998), профессор (с 1999) кафедры математической кибернетики. Заместитель декана факультета по научной работе (с 2000).

Область научных интересов: структурная реализация дискретных функций и оценки её сложности; вложения графов и структурное моделирование в некоторых моделях вычислений; вопросы полноты и выразимости для некоторых типов функциональных систем; проблемы хэширования и сжатия информации; математические проблемы проектирования СБИС.

С.А. Ложкиным разработаны новые методы синтеза, позволившие для всех основных и многих других классов схем получить новые, существенно более точные, асимптотические оценки для так называемой функции Шеннона. Эти результаты создали основу для нового этапа в развитии асимптотической теории синтеза управляющих систем — этапа, связанного с изучением сложности реализации дискретных функций схемами различных типов на уровне асимптотических оценок высокой степени точности.

Читает лекционные курсы: «Основы кибернетики», «Дополнительные главы кибернетики и теории управляющих систем», «Математические модели и методы синтеза СБИС». Является разработчиком и руководителем магистерской программы «Математические модели и методы в проектировании СБИС».

Подготовил 14 кандидатов наук.

Автор более 130 научных работ, 7 учебных пособий и изобретения. В числе основных публикаций:

  • О сложности мультплексорной функции в классе-схем // Ученые записки Казан. гос. ун-та, сер. физ.-матем. науки, т. 151, кн. 2, 2009, с. 98–106 (соавт. Власов В.Н.).
  • Интеграция логического синтеза с привязкой к библиотеке в системе Integro // Проблемы разработки перспективных микро- и наноэлектронных систем — 2008 // В сб. научн. тр. — М., изд-во ИППМ РАН, 2008, c. 18–24 (соавт. Романов Д.С., Готманов А.Н., Попов Е.А., Шиганов А.Е);
  • О синтезе формул, сложность и глубина которых не превосходят асимптотически наилучших оценок высокой степени точности // Вестн. Моск. ун-та, сер. 1: Матем. Мех., 2007, № 3, c. 19–25;
  • О реализации функций алгебры логики BDD, вложенными единичный куб // Вестн. Моск. ун-та., сер. 15: Вычислит. матем. и киберн., 2006, № 4, c. 29–36 (соавт. Седелев О.Б.);
  • Об асимптотике сложности универсального клеточного контактного многополюсника // Вестн. Моск. ун-та, сер. 15: Вычислит. матем. и киберн., 2005, № 4, с. 30–38 (соавт. Евдокимова Т.Н.);
  • О минимальных схемах для монотонных симметрических функций с порогом 2 // Дискрет. матем., 2005, т. 17, вып. 4, с. 108–110;
  • Лекции по основам кибернетики (учебное пособие) — М., ф-т ВМК МГУ, 2004, С. 256;
  • Элементы теории графов, схем и автоматов (учебное пособие) — М., ф-т ВМК МГУ, 2000, С. 60 (соавт. Алексеев В.Б.);
  • О полноте и замкнутых классах функций алгебры логики с прямыми и итеративными переменными // Вестн. Моск. ун-та, сер. 15: Вычислит. матем. и киберн., 1999, № 3, c. 35–41;
  • Оценки высокой степени точности для сложности управляющих систем из некоторых классов // Математ. вопросы кибернетики, вып. 6 — М., Наука, 1996, c. 189–214;
  • О глубине функций алгебры логики в произвольном полном базисе // Вестн. Моск. ун-та, сер. 1: Матем.Мех., 1996, № 2, c. 80–82;